Abstract
Heat sensitivity and the development of thermotolerance of cells isolated directly from surgical specimens of human breast carcinoma, malignant melanoma and squamous cell carcinoma of the head and neck were studied in vitro using the Courtenay soft agar colony assay. The plating efficiency of some of the tumours was sufficiently high (0.3-20.4%) for survival curves covering up to two to three decades to be established. Experiments repeated with cells stored in liquid nitrogen showed that the survival assay gave highly reproducible results. Heat sensitivity of thermotolerant cells was studied by giving cells a conditioning heat treatment of 43.5 degrees C for 60 min and, after incubation at 37 degrees C for 24 h, second graded heat treatments at 43.5 degrees C. Significant differences in heat sensitivity and development of thermotolerance between the three tumour types were not found. However, the heat sensitivity, whether the cells were thermotolerant or not, differed considerably among individual tumours of each histological category. Do at 43.5 degrees C was found to be in the ranges of 23-59 min (breast carcinoma), 20-63 min (malignant melanoma) and 20-57 min (squamous cell carcinoma) for single-heated cells and 105-476 min (breast carcinoma). 102-455 min (malignant melanoma) and 87-400 min (squamous cell carcinoma) for thermotolerant cells. The heat sensitivity of cells made thermotolerant showed no significant correlation to the surviving fraction after the conditioning heat treatment. The study indicated that histological category is a poor parameter for assessment of clinical heat responsiveness of tumours. Breast carcinoma, malignant melanoma and squamous cell carcinoma are probably, from a thermobiological point of view, equally good candidates for clinical trial aimed at studying the potential usefulness of hyperthermia as an adjunct to radiation therapy and/or chemotherapy. The large differences in heat sensitivity and development of thermotolerance observed among individual tumours, irrespective of histological origin, suggested that an in vitro predictive assay for heat responsiveness would be very useful for stratification purposes in such clinical trials.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Courtenay V. D., Mills J. An in vitro colony assay for human tumours grown in immune-suppressed mice and treated in vivo with cytotoxic agents. Br J Cancer. 1978 Feb;37(2):261–268. doi: 10.1038/bjc.1978.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Courtenay V. D., Selby P. J., Smith I. E., Mills J., Peckham M. J. Growth of human tumour cell colonies from biopsies using two soft-agar techniques. Br J Cancer. 1978 Jul;38(1):77–81. doi: 10.1038/bjc.1978.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deacon J., Peckham M. J., Steel G. G. The radioresponsiveness of human tumours and the initial slope of the cell survival curve. Radiother Oncol. 1984 Dec;2(4):317–323. doi: 10.1016/s0167-8140(84)80074-2. [DOI] [PubMed] [Google Scholar]
- Emami B., Perez C. A., Konefal J., Pilepich M. V., Leybovich L., Straube W., VonGerichten D., Hederman M. A. Thermoradiotherapy of malignant melanoma. Int J Hyperthermia. 1988 Jul-Aug;4(4):373–381. doi: 10.3109/02656738809016491. [DOI] [PubMed] [Google Scholar]
- Fertil B., Malaise E. P. Intrinsic radiosensitivity of human cell lines is correlated with radioresponsiveness of human tumors: analysis of 101 published survival curves. Int J Radiat Oncol Biol Phys. 1985 Sep;11(9):1699–1707. doi: 10.1016/0360-3016(85)90223-8. [DOI] [PubMed] [Google Scholar]
- Gerner E. W., Schneider M. J. Induced thermal resistance in HeLa cells. Nature. 1975 Aug 7;256(5517):500–502. doi: 10.1038/256500a0. [DOI] [PubMed] [Google Scholar]
- Gerweck L. E. Modification of cell lethality at elevated temperatures. The pH effect. Radiat Res. 1977 Apr;70(1):224–235. [PubMed] [Google Scholar]
- Hand J. W., ter Haar G. Heating techniques in hyperthermia. I. Introduction and assessment of techniques. Br J Radiol. 1981 Jun;54(642):443–446. doi: 10.1259/0007-1285-54-642-443. [DOI] [PubMed] [Google Scholar]
- Hill S. A., Denekamp J. Histology as a method for determining thermal gradients in heated tumours. Br J Radiol. 1982 Sep;55(657):651–656. doi: 10.1259/0007-1285-55-657-651. [DOI] [PubMed] [Google Scholar]
- Li G. C., Hahn G. M. A proposed operational model of thermotolerance based on effects of nutrients and the initial treatment temperature. Cancer Res. 1980 Dec;40(12):4501–4508. [PubMed] [Google Scholar]
- Nielsen O. S. Effect of fractionated hyperthermia on hypoxic cells in vitro. Int J Radiat Biol Relat Stud Phys Chem Med. 1981 Jan;39(1):73–82. doi: 10.1080/09553008114550091. [DOI] [PubMed] [Google Scholar]
- Nishimura Y., Hiraoka M., Jo S., Akuta K., Yukawa Y., Shibamoto Y., Takahashi M., Abe M. Microangiographic and histologic analysis of the effects of hyperthermia on murine tumor vasculature. Int J Radiat Oncol Biol Phys. 1988 Aug;15(2):411–420. doi: 10.1016/s0360-3016(98)90023-2. [DOI] [PubMed] [Google Scholar]
- Perez C. A., Kuske R. R., Emami B., Fineberg B. Irradiation alone or combined with hyperthermia in the treatment of recurrent carcinoma of the breast in the chest wall: a nonrandomized comparison. Int J Hyperthermia. 1986 Apr-Jun;2(2):179–187. doi: 10.3109/02656738609012393. [DOI] [PubMed] [Google Scholar]
- Raaphorst G. P., Romano S. L., Mitchell J. B., Bedford J. S., Dewey W. C. Intrinsic differences in heat and/or X-ray sensitivity of seven mammalian cell lines cultured and treated under identical conditions. Cancer Res. 1979 Feb;39(2 Pt 1):396–401. [PubMed] [Google Scholar]
- Rofstad E. K., Brustad T. Primary and secondary cell death in human melanoma xenografts following hyperthermic treatment. Cancer Res. 1986 Jan;46(1):355–361. [PubMed] [Google Scholar]
- Rofstad E. K. Influence of cellular, microenvironmental, and growth parameters on thermotolerance kinetics in vivo in human melanoma xenografts. Cancer Res. 1989 Sep 15;49(18):5027–5032. [PubMed] [Google Scholar]
- Rofstad E. K., Midthjell H., Brustad T. Heat sensitivity and thermotolerance in cells from five human melanoma xenografts. Cancer Res. 1984 Oct;44(10):4347–4354. [PubMed] [Google Scholar]
- Rofstad E. K. Radiation response of the cells of a human malignant melanoma xenograft. Effect of hypoxic cell radiosensitizers. Radiat Res. 1981 Sep;87(3):670–683. [PubMed] [Google Scholar]
- Rofstad E. K., Wahl A., Brustad T. Radiation sensitivity in vitro of cells isolated from human tumor surgical specimens. Cancer Res. 1987 Jan 1;47(1):106–110. [PubMed] [Google Scholar]
- Rofstad E. K., Wahl A., Tveit K. M., Monge O. R., Brustad T. Survival curves after X-ray and heat treatments for melanoma cells derived directly from surgical specimens of tumours in man. Radiother Oncol. 1985 Aug;4(1):33–44. doi: 10.1016/s0167-8140(85)80060-8. [DOI] [PubMed] [Google Scholar]
- Roizin-Towle L., Pirro J. P., McDowell J. A comparison of the heat and radiation sensitivity of rodent and human derived cells cultured in vitro. Int J Radiat Oncol Biol Phys. 1986 Apr;12(4):647–653. doi: 10.1016/0360-3016(86)90075-1. [DOI] [PubMed] [Google Scholar]
- Solesvik O. V., Rofstad E. K., Brustad T. Vascular structure of five human malignant melanomas grown in athymic nude mice. Br J Cancer. 1982 Oct;46(4):557–567. doi: 10.1038/bjc.1982.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song C. W., Kang M. S., Rhee J. G., Levitt S. H. Vascular damage and delayed cell death in tumours after hyperthermia. Br J Cancer. 1980 Feb;41(2):309–312. doi: 10.1038/bjc.1980.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tveit K. M., Endresen L., Rugstad H. E., Fodstad O., Pihl A. Comparison of two soft-agar methods for assaying chemosensitivity of human tumours in vitro: malignant melanomas. Br J Cancer. 1981 Oct;44(4):539–544. doi: 10.1038/bjc.1981.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Urano M., Rice L. C., Montoya V. Studies on fractionated hyperthermia in experimental animal systems II. Response of murine tumors to two or more doses. Int J Radiat Oncol Biol Phys. 1982 Feb;8(2):227–233. doi: 10.1016/0360-3016(82)90518-1. [DOI] [PubMed] [Google Scholar]
- Valdagni R., Kapp D. S., Valdagni C. N3 (TNM-UICC) metastatic neck nodes managed by combined radiation therapy and hyperthermia: clinical results and analysis of treatment parameters. Int J Hyperthermia. 1986 Apr-Jun;2(2):189–200. doi: 10.3109/02656738609012394. [DOI] [PubMed] [Google Scholar]
- Vaupel P., Gabbert H. Evidence for and against a tumor type-specific vascularity. Strahlenther Onkol. 1986 Oct;162(10):633–638. [PubMed] [Google Scholar]
- Westra A., Dewey W. C. Variation in sensitivity to heat shock during the cell-cycle of Chinese hamster cells in vitro. Int J Radiat Biol Relat Stud Phys Chem Med. 1971;19(5):467–477. doi: 10.1080/09553007114550601. [DOI] [PubMed] [Google Scholar]
