Abstract
Mice bearing progressively growing syngeneic methylcholanthrene-induced sarcomas are immunologically hyporeactive. However, both basal (steady-state) and bacterial lipopolysaccharide (LPS)-induced synthesis of mRNA for interleukin-1 (IL-1) in peritoneal exudate cells (PEC) or spleen cells were comparable in control and tumour-bearing animals. Furthermore, the production of IL-1 by PEC stimulated with LPS in the presence of indomethacin was same in control and tumour-bearing mice. The results thus demonstrate that LPS-stimulated cells from animals bearing progressively growing syngeneic sarcomas synthesise the same quantities of mRNA for IL-1 and produce comparable amounts of IL-1 as do cells from normal animals, in spite of the profound immunological hyporeactivity of the former.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Braunschweiger P. G., Johnson C. S., Kumar N., Ord V., Furmanski P. Antitumor effects of recombinant human interleukin 1 alpha in RIF-1 and Panc02 solid tumors. Cancer Res. 1988 Nov 1;48(21):6011–6016. [PubMed] [Google Scholar]
- Bubeník J., Indrová M., Holán V. Anti-tumour efficacy of IL-1 and IL-2. Folia Biol (Praha) 1988;34(1):42–47. [PubMed] [Google Scholar]
- Bubeník J., Indrová M., Nemecková S., Malkovský M., Von Broen B., Pálek V., Anderlíková J. Solubilized tumour-associated antigens of methyl-cholanthrene-induced mouse sarcomas. Comparative studies by in vitro sensitization of lymph-node cells, macrophage electrophoretic mobility assay and transplantation tests. Int J Cancer. 1978 Mar 15;21(3):348–355. doi: 10.1002/ijc.2910210316. [DOI] [PubMed] [Google Scholar]
- Castelli M. P., Black P. L., Schneider M., Pennington R., Abe F., Talmadge J. E. Protective, restorative, and therapeutic properties of recombinant human IL-1 in rodent models. J Immunol. 1988 Jun 1;140(11):3830–3837. [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Czuprynski C. J., Brown J. F. Recombinant murine interleukin-1 alpha enhancement of nonspecific antibacterial resistance. Infect Immun. 1987 Sep;55(9):2061–2065. doi: 10.1128/iai.55.9.2061-2065.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durum S. K., Schmidt J. A., Oppenheim J. J. Interleukin 1: an immunological perspective. Annu Rev Immunol. 1985;3:263–287. doi: 10.1146/annurev.iy.03.040185.001403. [DOI] [PubMed] [Google Scholar]
- Economou J. S., Colquhoun S. D., Anderson T. M., McBride W. W., Golub S., Holmes E. C., Morton D. L. Interleukin-1 and tumor necrosis factor production by tumor-associated mononuclear leukocytes and peripheral mononuclear leukocytes in cancer patients. Int J Cancer. 1988 Nov 15;42(5):712–714. doi: 10.1002/ijc.2910420514. [DOI] [PubMed] [Google Scholar]
- Gaffney E. V., Tsai S. C. Lymphocyte-activating and growth-inhibitory activities for several sources of native and recombinant interleukin 1. Cancer Res. 1986 Aug;46(8):3834–3837. [PubMed] [Google Scholar]
- Garraud O., Faucher A., Legrand E. Impairment of monocyte functions in advanced head and neck cancer. Immunol Lett. 1988 Jul;18(3):213–218. doi: 10.1016/0165-2478(88)90021-1. [DOI] [PubMed] [Google Scholar]
- Gascon P., Scala G. Decreased interleukin-1 production in aplastic anemia. Am J Med. 1988 Nov;85(5):668–674. doi: 10.1016/s0002-9343(88)80240-7. [DOI] [PubMed] [Google Scholar]
- Goodwin J. S., Ceuppens J. Regulation of the immune response by prostaglandins. J Clin Immunol. 1983 Oct;3(4):295–315. doi: 10.1007/BF00915791. [DOI] [PubMed] [Google Scholar]
- Herman J., Kew M. C., Rabson A. R. Defective interleukin-1 production by monocytes from patients with malignant disease. Interferon increases IL-1 production. Cancer Immunol Immunother. 1984;16(3):182–185. doi: 10.1007/BF00205426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holán V., Lipoldová M., Takác M., Cerná J., Vancatová A., Cechová D., Veselský L., Hasek M. Establishment and characterization of a permanent T-cell line producing an antigen non-specific suppressor factor. Immunology. 1985 Oct;56(2):275–283. [PMC free article] [PubMed] [Google Scholar]
- Koide S., Steinman R. M. Induction of murine interleukin 1: stimuli and responsive primary cells. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3802–3806. doi: 10.1073/pnas.84.11.3802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lachman L. B., Dinarello C. A., Llansa N. D., Fidler I. J. Natural and recombinant human interleukin 1-beta is cytotoxic for human melanoma cells. J Immunol. 1986 Apr 15;136(8):3098–3102. [PubMed] [Google Scholar]
- Lipoldova M., Londei M., Grubeck-Loebenstein B., Feldmann M., Owen M. J. Analysis of T-cell receptor usage in activated T-cell clones from Hashimoto's thyroiditis and Graves' disease. J Autoimmun. 1989 Feb;2(1):1–13. doi: 10.1016/0896-8411(89)90103-0. [DOI] [PubMed] [Google Scholar]
- Lomedico P. T., Gubler U., Hellmann C. P., Dukovich M., Giri J. G., Pan Y. C., Collier K., Semionow R., Chua A. O., Mizel S. B. Cloning and expression of murine interleukin-1 cDNA in Escherichia coli. 1984 Nov 29-Dec 5Nature. 312(5993):458–462. doi: 10.1038/312458a0. [DOI] [PubMed] [Google Scholar]
- Mizel S. B., Dukovich M., Rothstein J. Preparation of goat antibodies against interleukin 1: use of an immunoadsorbent to purify interleukin 1. J Immunol. 1983 Oct;131(4):1834–1837. [PubMed] [Google Scholar]
- Nakamura S., Nakata K., Kashimoto S., Yoshida H., Yamada M. Antitumor effect of recombinant human interleukin 1 alpha against murine syngeneic tumors. Jpn J Cancer Res. 1986 Aug;77(8):767–773. [PubMed] [Google Scholar]
- Nakata K., Kashimoto S., Yoshida H., Oku T., Nakamura S. Augmented antitumor effect of recombinant human interleukin-1 alpha by indomethacin. Cancer Res. 1988 Feb 1;48(3):584–588. [PubMed] [Google Scholar]
- North R. J. Down-regulation of the antitumor immune response. Adv Cancer Res. 1985;45:1–43. doi: 10.1016/s0065-230x(08)60265-1. [DOI] [PubMed] [Google Scholar]
- North R. J., Neubauer R. H., Huang J. J., Newton R. C., Loveless S. E. Interleukin 1-induced, T cell-mediated regression of immunogenic murine tumors. Requirement for an adequate level of already acquired host concomitant immunity. J Exp Med. 1988 Dec 1;168(6):2031–2043. doi: 10.1084/jem.168.6.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Onozaki K., Matsushima K., Aggarwal B. B., Oppenheim J. J. Human interleukin 1 is a cytocidal factor for several tumor cell lines. J Immunol. 1985 Dec;135(6):3962–3968. [PubMed] [Google Scholar]
- Parhar R. S., Lala P. K. Prostaglandin E2-mediated inactivation of various killer lineage cells by tumor-bearing host macrophages. J Leukoc Biol. 1988 Dec;44(6):474–484. doi: 10.1002/jlb.44.6.474. [DOI] [PubMed] [Google Scholar]
- Pollack S., Micali A., Kinne D. W., Enker W. E., Geller N., Oettgen H. F., Hoffmann M. K. Endotoxin-induced in vitro release of interleukin-1 by cancer patients' monocytes: relation to stage of disease. Int J Cancer. 1983 Dec 15;32(6):733–736. doi: 10.1002/ijc.2910320613. [DOI] [PubMed] [Google Scholar]
- Santos L. B., Yamada F. T., Scheinberg M. A. Monocyte and lymphocyte interaction in patients with advanced cancer. Evidence for deficient IL-1 production. Cancer. 1985 Oct 1;56(7):1553–1558. doi: 10.1002/1097-0142(19851001)56:7<1553::aid-cncr2820560715>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
- Young M. R., Hoover C. S. Inhibition of spleen cell cytotoxic capacity toward tumor by elevated prostaglandin E2 levels in mice bearing Lewis lung carcinoma. J Natl Cancer Inst. 1986 Aug;77(2):425–429. [PubMed] [Google Scholar]