Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1991 Jan;63(1):45–50. doi: 10.1038/bjc.1991.10

Glutathione diminishes the anti-tumour activity of 4-hydroperoxycyclophosphamide by stabilising its spontaneous breakdown to alkylating metabolites.

F Y Lee 1
PMCID: PMC1971657  PMID: 1989664

Abstract

Evidence was obtained showing that GSH protects against the cytotoxicity of 4-hydroperoxycyclophosphamide (4-OOH-CP) by minimizing the spontaneous fission of 4-hydroxycyclophosphamide (4-OH-CP), its breakdown product, to the ultimate toxic species, phosphoramide mustard (PM). This conclusion was borne out in two series of experiments. The first demonstrated that 4-OH-CP was progressively more stable in aqueous solutions containing increasing concentrations of GSH. The second series of experiments were carried out with tumour cell lines with high (SKOV-3) and low (KHT) GSH contents. The cytotoxicity of 4-OOH-CP, a stable precursor that rapidly gives rise to 4-OH-CP spontaneously under physiological conditions, was enhanced in GSH-depleted SKOV-3 cells, but was unchanged in GSH-depleted KHT cells. It is concluded that the high GSH content of SKOV-3 cells provides a significant protection against 4-OH-CP by limiting the breakdown/activation of 4-OH-CP. Deschloro-4-hydroperoxycyclophosphamide (deschloro-4-OOH-CP), an analogue of 4-OOH-CP that generates acrolein (AC) but not PM in the spontaneous fission reaction, is essentially non-toxic when compared with 4-OOH-CP but is equally potent in depleting GSH. It is postulated that AC may promote the cytotoxicity of the parent 4-OH-CP by depleting cellular GSH. Consequently, the stabilising influence of GSH on 4-OH-CP is removed, leading to increased formation of PM, the ultimate cytotoxic agent.

Full text

PDF
45

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams K. J., Carmichael J., Wolf C. R. Altered mouse bone marrow glutathione and glutathione transferase levels in response to cytotoxins. Cancer Res. 1985 Apr;45(4):1669–1673. [PubMed] [Google Scholar]
  2. Alberts D. S., Einspahr J. G., Struck R., Bignami G., Young L., Surwit E. A., Salmon S. E. Comparative in vitro cytotoxicity of cyclophosphamide, its major active metabolites and the new oxazaphosphorine ASTA Z 7557 (INN mafosfamide). Invest New Drugs. 1984;2(2):141–148. doi: 10.1007/BF00232343. [DOI] [PubMed] [Google Scholar]
  3. Arrick B. A., Nathan C. F. Glutathione metabolism as a determinant of therapeutic efficacy: a review. Cancer Res. 1984 Oct;44(10):4224–4232. [PubMed] [Google Scholar]
  4. Brock N. Comparative pharmacologic study in vitro and in vivo with cyclophosphamide (NSC-26271), cyclophosphamide metabolites, and plain nitrogen mustard compounds. Cancer Treat Rep. 1976 Apr;60(4):301–308. [PubMed] [Google Scholar]
  5. Carmichael J., Adams D. J., Ansell J., Wolf C. R. Glutathione and glutathione transferase levels in mouse granulocytes following cyclophosphamide administration. Cancer Res. 1986 Feb;46(2):735–739. [PubMed] [Google Scholar]
  6. Carmichael J., Friedman N., Tochner Z., Adams D. J., Wolf C. R., Mitchell J. B., Russo A. Inhibition of the protective effect of cyclophosphamide by pre-treatment with buthionine sulfoximine. Int J Radiat Oncol Biol Phys. 1986 Jul;12(7):1191–1193. doi: 10.1016/0360-3016(86)90256-7. [DOI] [PubMed] [Google Scholar]
  7. Connors T. A., Cox P. J., Farmer P. B., Foster A. B., Jarman M. Some studies of the active intermediates formed in the microsomal metabolism of cyclophosphamide and isophosphamide. Biochem Pharmacol. 1974 Jan 1;23(1):115–129. doi: 10.1016/0006-2952(74)90318-9. [DOI] [PubMed] [Google Scholar]
  8. Crook T. R., Souhami R. L., Whyman G. D., McLean A. E. Glutathione depletion as a determinant of sensitivity of human leukemia cells to cyclophosphamide. Cancer Res. 1986 Oct;46(10):5035–5038. [PubMed] [Google Scholar]
  9. Erickson L. C., Ramonas L. M., Zaharko D. S., Kohn K. W. Cytotoxicity and DNA cross-linking activity of 4-sulfidocyclophosphamides in mouse leukemia cells in vitro. Cancer Res. 1980 Nov;40(11):4216–4220. [PubMed] [Google Scholar]
  10. Gurtoo H. L., Hipkens J. H., Sharma S. D. Role of glutathione in the metabolism-dependent toxicity and chemotherapy of cyclophosphamide. Cancer Res. 1981 Sep;41(9 Pt 1):3584–3591. [PubMed] [Google Scholar]
  11. Hilton J. Role of aldehyde dehydrogenase in cyclophosphamide-resistant L1210 leukemia. Cancer Res. 1984 Nov;44(11):5156–5160. [PubMed] [Google Scholar]
  12. Hohorst H. J., Draeger U., Peter G., Voelcker G. The problem of oncostatic specificity of cyclophosphamide (NSC-26271): Studies on reactions that control the alkylating and cytotoxic activity. Cancer Treat Rep. 1976 Apr;60(4):309–315. [PubMed] [Google Scholar]
  13. Kallman R. F., Silini G., Van Putten L. M. Factors influencing the quantitative estimation of the in vivo survival of cells from solid tumors. J Natl Cancer Inst. 1967 Sep;39(3):539–549. [PubMed] [Google Scholar]
  14. Kwon C. H., Borch R. F., Engel J., Niemeyer U. Activation mechanisms of mafosfamide and the role of thiols in cyclophosphamide metabolism. J Med Chem. 1987 Feb;30(2):395–399. doi: 10.1021/jm00385a023. [DOI] [PubMed] [Google Scholar]
  15. Lee F. Y., Vessey A. R., Siemann D. W. Glutathione as a determinant of cellular response to doxorubicin. NCI Monogr. 1988;(6):211–215. [PubMed] [Google Scholar]
  16. Lee F. Y., Vessey A., Rofstad E., Siemann D. W., Sutherland R. M. Heterogeneity of glutathione content in human ovarian cancer. Cancer Res. 1989 Oct 1;49(19):5244–5248. [PubMed] [Google Scholar]
  17. McGown A. T., Fox B. W. A proposed mechanism of resistance to cyclophosphamide and phosphoramide mustard in a Yoshida cell line in vitro. Cancer Chemother Pharmacol. 1986;17(3):223–226. doi: 10.1007/BF00256688. [DOI] [PubMed] [Google Scholar]
  18. Ono K., Shrieve D. C. Effect of glutathione depletion by L-buthionine sulfoximine on the cytotoxicity of cyclophosphamide in single and fractionated doses to EMT6/SF mouse tumors and bone marrow. J Natl Cancer Inst. 1987 Oct;79(4):811–815. [PubMed] [Google Scholar]
  19. Russo A., Carmichael J., Friedman N., DeGraff W., Tochner Z., Glatstein E., Mitchell J. B. The roles of intracellular glutathione in antineoplastic chemotherapy. Int J Radiat Oncol Biol Phys. 1986 Aug;12(8):1347–1354. doi: 10.1016/0360-3016(86)90169-0. [DOI] [PubMed] [Google Scholar]
  20. Siemann D. W., Flaherty A. A., Penney D. P. Effect of thiol manipulation on chemopotentiation by nitroimidazoles. Int J Radiat Oncol Biol Phys. 1989 May;16(5):1341–1345. doi: 10.1016/0360-3016(89)90311-8. [DOI] [PubMed] [Google Scholar]
  21. Siemann D. W., Lord E. M., Keng P. C., Wheeler K. T. Cell subpopulations dispersed from solid tumours and separated by centrifugal elutriation. Br J Cancer. 1981 Jul;44(1):100–108. doi: 10.1038/bjc.1981.154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Struck R. F., Kirk M. C., Witt M. H., Laster W. R., Jr Isolation and mass spectral identification of blood metabolites of cyclophosphamide: evidence for phosphoramide mustard as the biologically active metabolite. Biomed Mass Spectrom. 1975 Feb;2(1):46–52. doi: 10.1002/bms.1200020109. [DOI] [PubMed] [Google Scholar]
  23. Wardman P., Clarke E. D. Redox properties and rate constants in free-radical mediated damage. Br J Cancer Suppl. 1987 Jun;8:172–177. [PMC free article] [PubMed] [Google Scholar]
  24. Whillans D. W., Rauth A. M. An experimental and analytical study of oxygen depletion in stirred cell suspensions. Radiat Res. 1980 Oct;84(1):97–114. [PubMed] [Google Scholar]
  25. Wrabetz E., Peter G., Hohorst H. J. Does acrolein contribute to the cytotoxicity of cyclophosphamide? J Cancer Res Clin Oncol. 1980;98(2):119–126. doi: 10.1007/BF00405956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zon G., Ludeman S. M., Brandt J. A., Boyd V. L., Ozkan G., Egan W., Shao K. L. NMR spectroscopic studies of intermediary metabolites of cyclophosphamide. A comprehensive kinetic analysis of the interconversion of cis- and trans-4-hydroxycyclophosphamide with aldophosphamide and the concomitant partitioning of aldophosphamide between irreversible fragmentation and reversible conjugation pathways. J Med Chem. 1984 Apr;27(4):466–485. doi: 10.1021/jm00370a008. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES