Abstract
The tumour cell lines U937A and L929 form large, loosely packed colonies in vitro and can be killed by the cytokine tumour necrosis factor (TNF). In contrast, their TNF-resistant mutants U937A/R and L929/R form tightly packed colonies. Since cells which form loose colonies have increased metastatic potential it is important to understand the factors governing colonial morphology. To this end, we have compared the extracellular matrices (ECMs) of the 'loose' lines, U937A and L929 with their 'tight' mutants. By immunofluorescence, a polyvalent anti-U937A serum revealed a fibrillar network in the ECMs of the 'loose' lines which was absent in the 'tight'. On Western blotting of ECMs the antiserum detected an additional 300 kDa protein in the 'loose' lines which was subsequently shown to be cellular fibronectin. The four lines secreted comparable amounts of fibronectin and this was qualitatively indistinguishable between 'loose' and 'tight' cells by peptide mapping or lectin binding. It is concluded that the differences in colonial morphology are due to the 'tight' mutants' inability to incorporate fibronectin into the ECM.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aoyagi Y. Distribution of plasma fibronectin in the metastatic lesion of cancer: experimental study by autoradiography. Thromb Res. 1988 Jan 15;49(2):265–275. doi: 10.1016/0049-3848(88)90219-8. [DOI] [PubMed] [Google Scholar]
- Blake M. S., Johnston K. H., Russell-Jones G. J., Gotschlich E. C. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem. 1984 Jan;136(1):175–179. doi: 10.1016/0003-2697(84)90320-8. [DOI] [PubMed] [Google Scholar]
- Bretscher M. S., Bretcher M. S. Fibroblasts on the move. J Cell Biol. 1988 Feb;106(2):235–237. doi: 10.1083/jcb.106.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carswell E. A., Old L. J., Kassel R. L., Green S., Fiore N., Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3666–3670. doi: 10.1073/pnas.72.9.3666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christensen L., Nielsen M., Andersen J., Clemmensen I. Stromal fibronectin staining pattern and metastasizing ability of human breast carcinoma. Cancer Res. 1988 Nov 1;48(21):6227–6233. [PubMed] [Google Scholar]
- Clark S. R., Brody J. S., Sidebottom E. Morphological and metastatic murine melanoma variants: motility, adhesiveness, cell surface and in vivo properties. Br J Cancer. 1987 Nov;56(5):577–584. doi: 10.1038/bjc.1987.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahl S. C., Grabel L. B. Altered accumulations of fibronectin are not dependent on fibronectin modifications during the differentiation of F-9 teratocarcinoma stem cells. Exp Cell Res. 1988 Jun;176(2):234–247. doi: 10.1016/0014-4827(88)90327-8. [DOI] [PubMed] [Google Scholar]
- Dennis J. W. Asn-linked oligosaccharide processing and malignant potential. Cancer Surv. 1988;7(4):573–595. [PubMed] [Google Scholar]
- Hassell J. R., Pennypacker J. P., Kleinman H. K., Pratt R. M., Yamada K. M. Enhanced cellular fibronectin accumulation in chondrocytes treated with vitamin A. Cell. 1979 Aug;17(4):821–826. doi: 10.1016/0092-8674(79)90322-2. [DOI] [PubMed] [Google Scholar]
- Hedin U., Bottger B. A., Forsberg E., Johansson S., Thyberg J. Diverse effects of fibronectin and laminin on phenotypic properties of cultured arterial smooth muscle cells. J Cell Biol. 1988 Jul;107(1):307–319. doi: 10.1083/jcb.107.1.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heremans A., Cassiman J. J., Van den Berghe H., David G. Heparan sulfate proteoglycan from the extracellular matrix of human lung fibroblasts. Isolation, purification, and core protein characterization. J Biol Chem. 1988 Apr 5;263(10):4731–4739. [PubMed] [Google Scholar]
- Hynes R. Molecular biology of fibronectin. Annu Rev Cell Biol. 1985;1:67–90. doi: 10.1146/annurev.cb.01.110185.000435. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Laferté S., Dennis J. W. Glycosylation-dependent collagen-binding activities of two membrane glycoproteins in MDAY-D2 tumor cells. Cancer Res. 1988 Sep 1;48(17):4743–4748. [PubMed] [Google Scholar]
- LeBoeuf R. C., Puppione D. L., Schumaker V. N., Lusis A. J. Genetic control of lipid transport in mice. I. Structural properties and polymorphisms of plasma lipoproteins. J Biol Chem. 1983 Apr 25;258(8):5063–5070. [PubMed] [Google Scholar]
- Matthews N., Neale M. L. Relationship between tumour cell morphology, gap junctions and susceptibility to cytolysis by tumour necrosis factor. Br J Cancer. 1989 Feb;59(2):189–193. doi: 10.1038/bjc.1989.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Millis A. J., Hoyle M., Mann D. M., Brennan M. J. Incorporation of cellular and plasma fibronectins into smooth muscle cell extracellular matrix in vitro. Proc Natl Acad Sci U S A. 1985 May;82(9):2746–2750. doi: 10.1073/pnas.82.9.2746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neale M. L., Fiera R. A., Matthews N. Tumour cells which develop resistance to cytolysis by tumour necrosis factor have a different glycoform of a 105-kDa glycoprotein and lose the capacity to invade and metastasize. Int J Cancer. 1990 Jan 15;45(1):203–208. doi: 10.1002/ijc.2910450136. [DOI] [PubMed] [Google Scholar]
- Quade B. J., McDonald J. A. Fibronectin's amino-terminal matrix assembly site is located within the 29-kDa amino-terminal domain containing five type I repeats. J Biol Chem. 1988 Dec 25;263(36):19602–19609. [PubMed] [Google Scholar]






