Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1990 Jul;62(1):85–88. doi: 10.1038/bjc.1990.234

Cyclosporin A and verapamil have different effects on energy metabolism in multidrug-resistant tumour cells.

H J Broxterman 1, H M Pinedo 1, G J Schuurhuis 1, J Lankelma 1
PMCID: PMC1971735  PMID: 2390489

Abstract

Cyclosporin A (Sandimmune) rapidly induced an increase in daunorubicin accumulation in multidrug-resistant human ovarian carcinoma cells (2780AD) and was more potent than verapamil. Steady-state 3H-cyclosporin A accumulation at 37 degrees C in 2780AD cells was 60-70% of that in the sensitive A2780 cells. A rapid increase of ATP consumption and lactate production was induced in 2780AD cells by verapamil, but not by cyclosporin A. These results suggest that the interactions of cyclosporin A and verapamil with P-glycoprotein, which leads to inhibition of drug transport, have a different mechanistic basis.

Full text

PDF
85

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama S., Cornwell M. M., Kuwano M., Pastan I., Gottesman M. M. Most drugs that reverse multidrug resistance also inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog. Mol Pharmacol. 1988 Feb;33(2):144–147. [PubMed] [Google Scholar]
  2. Arsenault A. L., Ling V., Kartner N. Altered plasma membrane ultrastructure in multidrug-resistant cells. Biochim Biophys Acta. 1988 Feb 18;938(2):315–321. doi: 10.1016/0005-2736(88)90169-1. [DOI] [PubMed] [Google Scholar]
  3. Bradley G., Juranka P. F., Ling V. Mechanism of multidrug resistance. Biochim Biophys Acta. 1988 Aug 3;948(1):87–128. doi: 10.1016/0304-419x(88)90006-6. [DOI] [PubMed] [Google Scholar]
  4. Broxterman H. J., Kuiper C. M., Schuurhuis G. J., Tsuruo T., Pinedo H. M., Lankelma J. Increase of daunorubicin and vincristine accumulation in multidrug resistant human ovarian carcinoma cells by a monoclonal antibody reacting with P-glycoprotein. Biochem Pharmacol. 1988 Jun 15;37(12):2389–2393. doi: 10.1016/0006-2952(88)90365-6. [DOI] [PubMed] [Google Scholar]
  5. Broxterman H. J., Kuiper C. M., Schuurhuis G. J., van der Hoeven J. J., Pinedo H. M., Lankelma J. Daunomycin accumulation in resistant tumor cells as a screening model for resistance modifying drugs: role of protein binding. Cancer Lett. 1987 Apr;35(1):87–95. doi: 10.1016/0304-3835(87)90060-7. [DOI] [PubMed] [Google Scholar]
  6. Broxterman H. J., Pinedo H. M., Kuiper C. M., Kaptein L. C., Schuurhuis G. J., Lankelma J. Induction by verapamil of a rapid increase in ATP consumption in multidrug-resistant tumor cells. FASEB J. 1988 Apr;2(7):2278–2282. doi: 10.1096/fasebj.2.7.3350243. [DOI] [PubMed] [Google Scholar]
  7. Broxterman H. J., Pinedo H. M., Kuiper C. M., Schuurhuis G. J., Lankelma J. Glycolysis in P-glycoprotein-overexpressing human tumor cell lines. Effects of resistance-modifying agents. FEBS Lett. 1989 Apr 24;247(2):405–410. doi: 10.1016/0014-5793(89)81380-8. [DOI] [PubMed] [Google Scholar]
  8. Chambers S. K., Hait W. N., Kacinski B. M., Keyes S. R., Handschumacher R. E. Enhancement of anthracycline growth inhibition in parent and multidrug-resistant Chinese hamster ovary cells by cyclosporin A and its analogues. Cancer Res. 1989 Nov 15;49(22):6275–6279. [PubMed] [Google Scholar]
  9. Foxwell B. M., Mackie A., Ling V., Ryffel B. Identification of the multidrug resistance-related P-glycoprotein as a cyclosporine binding protein. Mol Pharmacol. 1989 Oct;36(4):543–546. [PubMed] [Google Scholar]
  10. Goldberg H., Ling V., Wong P. Y., Skorecki K. Reduced cyclosporin accumulation in multidrug-resistant cells. Biochem Biophys Res Commun. 1988 Apr 29;152(2):552–558. doi: 10.1016/s0006-291x(88)80073-1. [DOI] [PubMed] [Google Scholar]
  11. Gruber A., Peterson C., Reizenstein P. D-verapamil and L-verapamil are equally effective in increasing vincristine accumulation in leukemic cells in vitro. Int J Cancer. 1988 Feb 15;41(2):224–226. doi: 10.1002/ijc.2910410211. [DOI] [PubMed] [Google Scholar]
  12. Hamada H., Tsuruo T. Characterization of the ATPase activity of the Mr 170,000 to 180,000 membrane glycoprotein (P-glycoprotein) associated with multidrug resistance in K562/ADM cells. Cancer Res. 1988 Sep 1;48(17):4926–4932. [PubMed] [Google Scholar]
  13. Haynes M., Fuller L., Haynes D. H., Miller J. Cyclosporin partitions into phospholipid vesicles and disrupts membrane architecture. Immunol Lett. 1985;11(5-6):343–349. doi: 10.1016/0165-2478(85)90118-x. [DOI] [PubMed] [Google Scholar]
  14. Helson L. Calcium channel blocker enhancement of anticancer drug cytotoxicity--a review. Cancer Drug Deliv. 1984 Fall;1(4):353–361. doi: 10.1089/cdd.1984.1.353. [DOI] [PubMed] [Google Scholar]
  15. Horio M., Gottesman M. M., Pastan I. ATP-dependent transport of vinblastine in vesicles from human multidrug-resistant cells. Proc Natl Acad Sci U S A. 1988 May;85(10):3580–3584. doi: 10.1073/pnas.85.10.3580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Huet S., Robert J. The reversal of doxorubicin resistance by verapamil is not due to an effect on calcium channels. Int J Cancer. 1988 Feb 15;41(2):283–286. doi: 10.1002/ijc.2910410220. [DOI] [PubMed] [Google Scholar]
  17. Inaba M., Johnson R. K. Uptake and retention of adriamycin and daunorubicin by sensitive and anthracycline-resistant sublines of P388 leukemia. Biochem Pharmacol. 1978;27(17):2123–2130. doi: 10.1016/0006-2952(78)90284-8. [DOI] [PubMed] [Google Scholar]
  18. Kessel D. Circumvention of resistance to anthracyclines by calcium antagonists and other membrane-perturbing agents. Cancer Surv. 1986;5(1):109–127. [PubMed] [Google Scholar]
  19. Leyva A., Appel H., Pinedo H. M. Purine modulation of thymidine activity in L1210 leukemia cells in vitro. Leuk Res. 1982;6(4):483–490. doi: 10.1016/0145-2126(82)90005-4. [DOI] [PubMed] [Google Scholar]
  20. Nooter K., Oostrum R., Jonker R., van Dekken H., Stokdijk W., van den Engh G. Effect of cyclosporin A on daunorubicin accumulation in multidrug-resistant P388 leukemia cells measured by real-time flow cytometry. Cancer Chemother Pharmacol. 1989;23(5):296–300. doi: 10.1007/BF00292407. [DOI] [PubMed] [Google Scholar]
  21. Osieka R., Seeber S., Pannenbäcker R., Soll D., Glatte P., Schmidt C. G. Enhancement of etoposide-induced cytotoxicity by cyclosporin A. Cancer Chemother Pharmacol. 1986;18(3):198–202. doi: 10.1007/BF00273385. [DOI] [PubMed] [Google Scholar]
  22. Peterson C., Baurain R., Trouet A. The mechanism for cellular uptake, storage and release of daunorubicin. Studies on fibroblasts in culture. Biochem Pharmacol. 1980 Jun 15;29(12):1687–1692. doi: 10.1016/0006-2952(80)90126-4. [DOI] [PubMed] [Google Scholar]
  23. Ramu N., Ramu A. Circumvention of adriamycin resistance by dipyridamole analogues: a structure-activity relationship study. Int J Cancer. 1989 Mar 15;43(3):487–491. doi: 10.1002/ijc.2910430324. [DOI] [PubMed] [Google Scholar]
  24. Rogan A. M., Hamilton T. C., Young R. C., Klecker R. W., Jr, Ozols R. F. Reversal of adriamycin resistance by verapamil in human ovarian cancer. Science. 1984 Jun 1;224(4652):994–996. doi: 10.1126/science.6372095. [DOI] [PubMed] [Google Scholar]
  25. Safa A. R., Glover C. J., Sewell J. L., Meyers M. B., Biedler J. L., Felsted R. L. Identification of the multidrug resistance-related membrane glycoprotein as an acceptor for calcium channel blockers. J Biol Chem. 1987 Jun 5;262(16):7884–7888. [PubMed] [Google Scholar]
  26. Schuurhuis G. J., Broxterman H. J., van der Hoeven J. J., Pinedo H. M., Lankelma J. Potentiation of doxorubicin cytotoxicity by the calcium antagonist bepridil in anthracycline-resistant and -sensitive cell lines. A comparison with verapamil. Cancer Chemother Pharmacol. 1987;20(4):285–290. doi: 10.1007/BF00262578. [DOI] [PubMed] [Google Scholar]
  27. Skovsgaard T., Nissen N. I. Membrane transport of anthracyclines. Pharmacol Ther. 1982;18(3):293–311. doi: 10.1016/0163-7258(82)90034-1. [DOI] [PubMed] [Google Scholar]
  28. Slater L. M., Sweet P., Stupecky M., Wetzel M. W., Gupta S. Cyclosporin A corrects daunorubicin resistance in Ehrlich ascites carcinoma. Br J Cancer. 1986 Aug;54(2):235–238. doi: 10.1038/bjc.1986.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Twentyman P. R. A possible role for cyclosporins in cancer chemotherapy. Anticancer Res. 1988 Sep-Oct;8(5A):985–993. [PubMed] [Google Scholar]
  30. Twentyman P. R., Fox N. E., White D. J. Cyclosporin A and its analogues as modifiers of adriamycin and vincristine resistance in a multi-drug resistant human lung cancer cell line. Br J Cancer. 1987 Jul;56(1):55–57. doi: 10.1038/bjc.1987.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Van der Bliek A. M., Baas F., Van der Velde-Koerts T., Biedler J. L., Meyers M. B., Ozols R. F., Hamilton T. C., Joenje H., Borst P. Genes amplified and overexpressed in human multidrug-resistant cell lines. Cancer Res. 1988 Nov 1;48(21):5927–5932. [PubMed] [Google Scholar]
  32. Vayuvegula B., Slater L., Meador J., Gupta S. Correction of altered plasma membrane potentials. A possible mechanism of cyclosporin A and verapamil reversal of pleiotropic drug resistance in neoplasia. Cancer Chemother Pharmacol. 1988;22(2):163–168. doi: 10.1007/BF00257315. [DOI] [PubMed] [Google Scholar]
  33. Walker R. J., Lazzaro V. A., Duggin G. G., Horvath J. S., Tiller D. J. Cyclosporin A inhibits protein kinase C activity: a contributing mechanism in the development of nephrotoxicity? Biochem Biophys Res Commun. 1989 Apr 14;160(1):409–415. doi: 10.1016/0006-291x(89)91671-9. [DOI] [PubMed] [Google Scholar]
  34. Zamora J. M., Pearce H. L., Beck W. T. Physical-chemical properties shared by compounds that modulate multidrug resistance in human leukemic cells. Mol Pharmacol. 1988 Apr;33(4):454–462. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES