Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1991 Mar;63(3):390–398. doi: 10.1038/bjc.1991.91

Purification and characterisation of a breast-cancer-associated glycoprotein not expressed in normal breast and identified by monoclonal antibody 83D4.

G Pancino 1, E Osinaga 1, C Charpin 1, D Mistro 1, J P Barque 1, A Roseto 1
PMCID: PMC1971846  PMID: 1706194

Abstract

Monoclonal antibody (mAb) 83D4 was generated using formol-fixed paraffin-embedded human breast carcinoma tissue as the immunogen. Previous studies demonstrated that it was reactive with breast carcinoma tissues, but not with normal breast. The antigen identified by mAb 83D4 was detected, using ELISA, in MCF7 breast carcinoma cell line membrane extracts, in primary breast and colon carcinoma tissue extracts and in pleural effusion fluid from patients with metastatic breast cancer. No reactivity with 83D4 was found in either human milk fat globule membranes or skimmed milk. 83D4 reactive antigen was found to be a heterogeneous high molecular weight (MW) protein (apparent Mr:300-400 to over 1000 kDa) by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. The antigen was purified from MCF7 cells, breast and colon carcinomas and effusion fluid, by perchloric acid solubilisation followed by immunoaffinity chromatography with 83D4. The immunopurified antigen from MCF7 cells and pleural effusion fluid was further analysed by gel filtration and ion-exchange chromatography, which confirmed the high MW and indicated the charge heterogeneity of the reactive molecules. The 83D4 reactive antigen strongly bound to wheat-germ agglutinin and weakly to peanut lectin. No binding was found with lentil lectin or concanavalin A. Antigenic activity was strongly reduced by trypsin and subtilysin digestion and by treatment with sodium periodate, but it was not affected by neuraminidase. These results imply the glycoprotein nature of the 83D4-defined antigen and the involvement of carbohydrate, but probably not sialic acid, in the epitope. Purified 83D4 antigen did not display reactivity for mAb HMFG-1, directed against a polymorphic epithelial mucin, PEM, using ELISA, but bound mAb CC49 and weakly mAb B72.3, antibodies which define a tumour associated glycoprotein, TAG-72. Moreover CC49 and 83D4 showed similar reactivity pattern in immunoblotting assays. A double determinant radioimmunoassay confirmed that 83D4 antigen carries epitopes for mAb B72.3 and CC49. Competition radioimmunoassays clearly distinguished the 83D4 defined epitope from those recognised by B72.3 and CC49, demonstrating that antibody 83D4 identifies a unique epitope. It is suggested that the antigens identified by mAb 83D4 and by mAb B72.3 and CC49 may form part of the same family of carcinoma associated glycoproteins.

Full text

PDF
390

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashall F., Bramwell M. E., Harris H. A new marker for human cancer cells. 1 The Ca antigen and the Ca1 antibody. Lancet. 1982 Jul 3;2(8288):1–6. doi: 10.1016/s0140-6736(82)91150-3. [DOI] [PubMed] [Google Scholar]
  2. Bolmer S. D., Davidson E. A. Preparation and properties of a glycoprotein associated with malignancy. Biochemistry. 1981 Mar 3;20(5):1047–1054. doi: 10.1021/bi00508a001. [DOI] [PubMed] [Google Scholar]
  3. Burchell J., Gendler S., Taylor-Papadimitriou J., Girling A., Lewis A., Millis R., Lamport D. Development and characterization of breast cancer reactive monoclonal antibodies directed to the core protein of the human milk mucin. Cancer Res. 1987 Oct 15;47(20):5476–5482. [PubMed] [Google Scholar]
  4. Colcher D., Hand P. H., Nuti M., Schlom J. A spectrum of monoclonal antibodies reactive with human mammary tumor cells. Proc Natl Acad Sci U S A. 1981 May;78(5):3199–3203. doi: 10.1073/pnas.78.5.3199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Frankel A. E., Ring D. B., Tringale F., Hsieh-Ma S. T. Tissue distribution of breast cancer-associated antigens defined by monoclonal antibodies. J Biol Response Mod. 1985 Jun;4(3):273–286. [PubMed] [Google Scholar]
  6. Gendler S., Taylor-Papadimitriou J., Duhig T., Rothbard J., Burchell J. A highly immunogenic region of a human polymorphic epithelial mucin expressed by carcinomas is made up of tandem repeats. J Biol Chem. 1988 Sep 15;263(26):12820–12823. [PubMed] [Google Scholar]
  7. Hakomori S. Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv Cancer Res. 1989;52:257–331. doi: 10.1016/s0065-230x(08)60215-8. [DOI] [PubMed] [Google Scholar]
  8. Hilkens J., Buijs F., Hilgers J., Hageman P., Calafat J., Sonnenberg A., van der Valk M. Monoclonal antibodies against human milk-fat globule membranes detecting differentiation antigens of the mammary gland and its tumors. Int J Cancer. 1984 Aug 15;34(2):197–206. doi: 10.1002/ijc.2910340210. [DOI] [PubMed] [Google Scholar]
  9. Hirohashi S., Clausen H., Yamada T., Shimosato Y., Hakomori S. Blood group A cross-reacting epitope defined by monoclonal antibodies NCC-LU-35 and -81 expressed in cancer of blood group O or B individuals: its identification as Tn antigen. Proc Natl Acad Sci U S A. 1985 Oct;82(20):7039–7043. doi: 10.1073/pnas.82.20.7039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Johnson V. G., Schlom J., Paterson A. J., Bennett J., Magnani J. L., Colcher D. Analysis of a human tumor-associated glycoprotein (TAG-72) identified by monoclonal antibody B72.3. Cancer Res. 1986 Feb;46(2):850–857. [PubMed] [Google Scholar]
  11. Keenan T. W., Morré D. J., Olson D. E., Yunghans W. N., Patton S. Biochemical and morphological comparison of plasma membrane and milk fat globule membrane from bovine mammary gland. J Cell Biol. 1970 Jan;44(1):80–93. doi: 10.1083/jcb.44.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Keydar I., Chou C. S., Hareuveni M., Tsarfaty I., Sahar E., Selzer G., Chaitchik S., Hizi A. Production and characterization of monoclonal antibodies identifying breast tumor-associated antigens. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1362–1366. doi: 10.1073/pnas.86.4.1362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kjeldsen T., Clausen H., Hirohashi S., Ogawa T., Iijima H., Hakomori S. Preparation and characterization of monoclonal antibodies directed to the tumor-associated O-linked sialosyl-2----6 alpha-N-acetylgalactosaminyl (sialosyl-Tn) epitope. Cancer Res. 1988 Apr 15;48(8):2214–2220. [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Linsley P. S., Ochs V., Laska S., Horn D., Ring D. B., Frankel A. E., Brown J. P. Elevated levels of a high molecular weight antigen detected by antibody W1 in sera from breast cancer patients. Cancer Res. 1986 Oct;46(10):5444–5450. [PubMed] [Google Scholar]
  17. Magnani J. L., Steplewski Z., Koprowski H., Ginsburg V. Identification of the gastrointestinal and pancreatic cancer-associated antigen detected by monoclonal antibody 19-9 in the sera of patients as a mucin. Cancer Res. 1983 Nov;43(11):5489–5492. [PubMed] [Google Scholar]
  18. Muraro R., Kuroki M., Wunderlich D., Poole D. J., Colcher D., Thor A., Greiner J. W., Simpson J. F., Molinolo A., Noguchi P. Generation and characterization of B72.3 second generation monoclonal antibodies reactive with the tumor-associated glycoprotein 72 antigen. Cancer Res. 1988 Aug 15;48(16):4588–4596. [PubMed] [Google Scholar]
  19. Pancino G. F., Le Doussal V., Mortada M. H., Berthon P., Osinaga E., Calvo F., Roseto A. Characterization and distribution in normal and tumoral human tissues of breast cancer-associated antigen defined by monoclonal antibody 7B10. Cancer Res. 1989 Dec 15;49(24 Pt 1):7078–7085. [PubMed] [Google Scholar]
  20. Pancino G. F., Osinaga E., Vorauher W., Kakouche A., Mistro D., Charpin C., Roseto A. Production of a monoclonal antibody as immunohistochemical marker on paraffin embedded tissues using a new immunization method. Hybridoma. 1990 Aug;9(4):389–395. doi: 10.1089/hyb.1990.9.389. [DOI] [PubMed] [Google Scholar]
  21. Pancino G., Charpin C., Calvo F., Guillemin M. C., Roseto A. A novel monoclonal antibody (7B10) with differential reactivity between human mammary carcinoma and normal breast. Cancer Res. 1987 Aug 15;47(16):4444–4452. [PubMed] [Google Scholar]
  22. Pancino G., Charpin C., Osinaga E., Betaille B., Le Roy M., Calvo F., Roseto A. Characterization and distribution in human tissues of a glycoproteic antigen defined by monoclonal antibody 1BE12 raised against the human breast cancer cell line T47D. Cancer Res. 1990 Nov 15;50(22):7333–7342. [PubMed] [Google Scholar]
  23. Papsidero L. D., Croghan G. A., Johnson E. A., Chu T. M. Immunoaffinity isolation of ductal carcinoma antigen using monoclonal antibody F36/22. Mol Immunol. 1984 Oct;21(10):955–960. doi: 10.1016/0161-5890(84)90153-6. [DOI] [PubMed] [Google Scholar]
  24. Sekine H., Ohno T., Kufe D. W. Purification and characterization of a high molecular weight glycoprotein detectable in human milk and breast carcinomas. J Immunol. 1985 Nov;135(5):3610–3615. [PubMed] [Google Scholar]
  25. Sheer D. G., Schlom J., Cooper H. L. Purification and composition of the human tumor-associated glycoprotein (TAG-72) defined by monoclonal antibodies CC49 and B72.3. Cancer Res. 1988 Dec 1;48(23):6811–6818. [PubMed] [Google Scholar]
  26. Soule H. D., Vazguez J., Long A., Albert S., Brennan M. A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst. 1973 Nov;51(5):1409–1416. doi: 10.1093/jnci/51.5.1409. [DOI] [PubMed] [Google Scholar]
  27. Stacker S. A., Tjandra J. J., Xing P. X., Walker I. D., Thompson C. H., McKenzie I. F. Purification and biochemical characterisation of a novel breast carcinoma associated mucin-like glycoprotein defined by antibody 3E1.2. Br J Cancer. 1989 Apr;59(4):544–553. doi: 10.1038/bjc.1989.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Taylor-Papadimitriou J., Peterson J. A., Arklie J., Burchell J., Ceriani R. L., Bodmer W. F. Monoclonal antibodies to epithelium-specific components of the human milk fat globule membrane: production and reaction with cells in culture. Int J Cancer. 1981 Jul 15;28(1):17–21. doi: 10.1002/ijc.2910280104. [DOI] [PubMed] [Google Scholar]
  29. Thor A., Ohuchi N., Szpak C. A., Johnston W. W., Schlom J. Distribution of oncofetal antigen tumor-associated glycoprotein-72 defined by monoclonal antibody B72.3. Cancer Res. 1986 Jun;46(6):3118–3124. [PubMed] [Google Scholar]
  30. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Woodward M. P., Young W. W., Jr, Bloodgood R. A. Detection of monoclonal antibodies specific for carbohydrate epitopes using periodate oxidation. J Immunol Methods. 1985 Apr 8;78(1):143–153. doi: 10.1016/0022-1759(85)90337-0. [DOI] [PubMed] [Google Scholar]
  32. Wreschner D. H., Hareuveni M., Tsarfaty I., Smorodinsky N., Horev J., Zaretsky J., Kotkes P., Weiss M., Lathe R., Dion A. Human epithelial tumor antigen cDNA sequences. Differential splicing may generate multiple protein forms. Eur J Biochem. 1990 May 20;189(3):463–473. doi: 10.1111/j.1432-1033.1990.tb15511.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES