Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Dec;176(24):7688–7693. doi: 10.1128/jb.176.24.7688-7693.1994

Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection.

H Loos 1, R Krämer 1, H Sahm 1, G A Sprenger 1
PMCID: PMC197227  PMID: 8002594

Abstract

The gram-negative ethanologenic bacterium Zymomonas mobilis is able to grow in media containing high concentrations of glucose or other sugars. A novel compatible solute for bacteria, sorbitol, which enhances growth of Z. mobilis at glucose concentrations exceeding 0.83 M (15%), is described. Added sorbitol was accumulated intracellularly up to 1 M to counteract high external glucose concentrations (up to 1.66 M or 30%). Accumulation of sorbitol was triggered by a glucose upshift (e.g., from 0.33 to 1.27 M or 6 to 23%) and was prevented by the uncoupler CCCP (carbonyl cyanide m-chlorophenylhydrazone; 100 microM). The sorbitol transport system followed Michaelis-Menten kinetics, with an apparent Km of 34 mM and a Vmax of 11.2 nmol.min-1.mg-1 (dry mass). Sorbitol was produced by the cells themselves and was accumulated when growing on sucrose (1 M or 36%) by the action of the periplasmic enzyme glucose-fructose oxidoreductase, which converts glucose and fructose to gluconolactone and sorbitol. Thus, Z. mobilis can form and accumulate the compatible solute sorbitol from a natural carbon source, sucrose, in order to overcome osmotic stress in high-sugar media. No other major compatible solute (betaine, proline, glutamate, or trehalose) was detected.

Full text

PDF
7688

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldrich H. C., McDowell L., Barbosa M. F., Yomano L. P., Scopes R. K., Ingram L. O. Immunocytochemical localization of glycolytic and fermentative enzymes in Zymomonas mobilis. J Bacteriol. 1992 Jul;174(13):4504–4508. doi: 10.1128/jb.174.13.4504-4508.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Brown A. D. Microbial water stress. Bacteriol Rev. 1976 Dec;40(4):803–846. doi: 10.1128/br.40.4.803-846.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Csonka L. N., Hanson A. D. Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol. 1991;45:569–606. doi: 10.1146/annurev.mi.45.100191.003033. [DOI] [PubMed] [Google Scholar]
  5. Csonka L. N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev. 1989 Mar;53(1):121–147. doi: 10.1128/mr.53.1.121-147.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dimarco A. A., Romano A. H. d-Glucose Transport System of Zymomonas mobilis. Appl Environ Microbiol. 1985 Jan;49(1):151–157. doi: 10.1128/aem.49.1.151-157.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hardman M. J., Scopes R. K. The kinetics of glucose-fructose oxidoreductase from Zymomonas mobilis. Eur J Biochem. 1988 Apr 5;173(1):203–209. doi: 10.1111/j.1432-1033.1988.tb13985.x. [DOI] [PubMed] [Google Scholar]
  8. Kanagasundaram V., Scopes R. K. Cloning, sequence analysis, and expression of the structural gene encoding glucose-fructose oxidoreductase from Zymomonas mobilis. J Bacteriol. 1992 Mar;174(5):1439–1447. doi: 10.1128/jb.174.5.1439-1447.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Le Rudulier D., Bouillard L. Glycine betaine, an osmotic effector in Klebsiella pneumoniae and other members of the Enterobacteriaceae. Appl Environ Microbiol. 1983 Jul;46(1):152–159. doi: 10.1128/aem.46.1.152-159.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Loos H., Sahm H., Sprenger G. A. Glucose-fructose oxidoreductase, a periplasmic enzyme of Zymomonas mobilis, is active in its precursor form. FEMS Microbiol Lett. 1993 Mar 1;107(2-3):293–298. doi: 10.1111/j.1574-6968.1993.tb06045.x. [DOI] [PubMed] [Google Scholar]
  11. Ruhrmann J., Krämer R. Mechanism of glutamate uptake in Zymomonas mobilis. J Bacteriol. 1992 Dec;174(23):7579–7584. doi: 10.1128/jb.174.23.7579-7584.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Swings J., De Ley J. The biology of Zymomonas. Bacteriol Rev. 1977 Mar;41(1):1–46. doi: 10.1128/br.41.1.1-46.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Zachariou M., Scopes R. K. Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production. J Bacteriol. 1986 Sep;167(3):863–869. doi: 10.1128/jb.167.3.863-869.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES