Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Dec;176(24):7719–7726. doi: 10.1128/jb.176.24.7719-7726.1994

Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4'-diaponeurosporene of Staphylococcus aureus.

B Wieland 1, C Feil 1, E Gloria-Maercker 1, G Thumm 1, M Lechner 1, J M Bravo 1, K Poralla 1, F Götz 1
PMCID: PMC197231  PMID: 8002598

Abstract

The major pigment produced by Staphylococcus aureus Newman is the deep-yellow carotenoid 4,4'-diaponeurosporene; after prolonged cultivation, this pigment is in part converted to the orange end product staphyloxanthin. From this strain a 3.5-kb DNA fragment was identified which after being cloned into Escherichia coli and Staphylococcus carnosus conferred the ability to produce 4,4'-diaponeurosporene. DNA sequencing of this fragment revealed two open reading frames (ORFs) which are very likely cotranscribed. ORF1 encodes a 254-amino-acid hydrophobic protein, CrtM (M(r), 30,121). The deduced sequence of CrtM exhibits in three domains similarities to the sequences of Saccharomyces cerevisiae and human squalene synthases and phytoene synthases of various bacteria. ORF2 encodes a 448-amino-acid hydrophobic protein, CrtN, with an M(r) of 50,853 whose deduced sequence is similar to those of phytoene desaturases of other bacteria. At the N terminus of CrtN a classical FAD-, NAD(P)-binding domain is found. Spectrophotometry and gas chromatography-mass spectrometry analyses of the carotenoid production of E. coli and S. carnosus clones containing either ORF1 or both ORFs together suggest that ORF1 and ORF2 represent the dehydrosqualene synthase gene (crtM) and the dehydrosqualene desaturase gene (crtN), respectively. The results furthermore suggest that the biosynthesis of 4,4'-diaponeurosporene starts with the condensation of two molecules of farnesyl diphosphate by dehydrosqualene synthase (CrtM); it is shown that the reaction product of this enzyme is dehydrosqualene and not squalene. Dehydrosqualene (4,4'-diapophytoene) is successively dehydrogenated by a desaturase (CrtN) to form the yellow main intermediate 4,4'-diaponeurosporene.

Full text

PDF
7719

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agnew W. S. Squalene synthetase. Methods Enzymol. 1985;110:359–373. doi: 10.1016/s0076-6879(85)10094-7. [DOI] [PubMed] [Google Scholar]
  2. Altenbern R. A. Genetic studies of pigmentation of staphylococcus aureus. Can J Microbiol. 1967 Apr;13(4):389–395. doi: 10.1139/m67-051. [DOI] [PubMed] [Google Scholar]
  3. Armstrong G. A., Alberti M., Hearst J. E. Conserved enzymes mediate the early reactions of carotenoid biosynthesis in nonphotosynthetic and photosynthetic prokaryotes. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9975–9979. doi: 10.1073/pnas.87.24.9975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Augustin J., Rosenstein R., Wieland B., Schneider U., Schnell N., Engelke G., Entian K. D., Götz F. Genetic analysis of epidermin biosynthetic genes and epidermin-negative mutants of Staphylococcus epidermidis. Eur J Biochem. 1992 Mar 15;204(3):1149–1154. doi: 10.1111/j.1432-1033.1992.tb16740.x. [DOI] [PubMed] [Google Scholar]
  5. Birnboim H. C. A rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enzymol. 1983;100:243–255. doi: 10.1016/0076-6879(83)00059-2. [DOI] [PubMed] [Google Scholar]
  6. Chamovitz D., Misawa N., Sandmann G., Hirschberg J. Molecular cloning and expression in Escherichia coli of a cyanobacterial gene coding for phytoene synthase, a carotenoid biosynthesis enzyme. FEBS Lett. 1992 Jan 27;296(3):305–310. doi: 10.1016/0014-5793(92)80310-d. [DOI] [PubMed] [Google Scholar]
  7. Chen E. Y., Seeburg P. H. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA. 1985 Apr;4(2):165–170. doi: 10.1089/dna.1985.4.165. [DOI] [PubMed] [Google Scholar]
  8. Fujisaki S., Nishino T., Katsuki H., Hara H., Nishimura Y., Hirota Y. Isolation and characterization of an Escherichia coli mutant having temperature-sensitive farnesyl diphosphate synthase. J Bacteriol. 1989 Oct;171(10):5654–5658. doi: 10.1128/jb.171.10.5654-5658.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grinsted J., Lacey R. W. Ecological and genetic implications of pigmentation in Staphylococcus aureus. J Gen Microbiol. 1973 Apr;75(2):259–267. doi: 10.1099/00221287-75-2-259. [DOI] [PubMed] [Google Scholar]
  10. Jennings S. M., Tsay Y. H., Fisch T. M., Robinson G. W. Molecular cloning and characterization of the yeast gene for squalene synthetase. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6038–6042. doi: 10.1073/pnas.88.14.6038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kreutz B., Götz F. Construction of Staphylococcus plasmid vector pCA43 conferring resistance to chloramphenicol, arsenate, arsenite and antimony. Gene. 1984 Nov;31(1-3):301–304. doi: 10.1016/0378-1119(84)90226-9. [DOI] [PubMed] [Google Scholar]
  12. Marshall J. H., Wilmoth G. J. Pigments of Staphylococcus aureus, a series of triterpenoid carotenoids. J Bacteriol. 1981 Sep;147(3):900–913. doi: 10.1128/jb.147.3.900-913.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Marshall J. H., Wilmoth G. J. Proposed pathway of triterpenoid carotenoid biosynthesis in Staphylococcus aureus: evidence from a study of mutants. J Bacteriol. 1981 Sep;147(3):914–919. doi: 10.1128/jb.147.3.914-919.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Misawa N., Nakagawa M., Kobayashi K., Yamano S., Izawa Y., Nakamura K., Harashima K. Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol. 1990 Dec;172(12):6704–6712. doi: 10.1128/jb.172.12.6704-6712.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Novick R. P., Bouanchaud D. The problems of drug-resistant pathogenic bacteria. Extrachromosomal nature of drug resistance in Staphylococcus aureus. Ann N Y Acad Sci. 1971 Jun 11;182:279–294. doi: 10.1111/j.1749-6632.1971.tb30664.x. [DOI] [PubMed] [Google Scholar]
  16. Robinson G. W., Tsay Y. H., Kienzle B. K., Smith-Monroy C. A., Bishop R. W. Conservation between human and fungal squalene synthetases: similarities in structure, function, and regulation. Mol Cell Biol. 1993 May;13(5):2706–2717. doi: 10.1128/mcb.13.5.2706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rosenstein R., Peschel A., Wieland B., Götz F. Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267. J Bacteriol. 1992 Jun;174(11):3676–3683. doi: 10.1128/jb.174.11.3676-3683.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. SERVIN-MASSIEU M. Spontaneous appearance of sectored colonies in Staphylococcus aureus cultures. J Bacteriol. 1961 Aug;82:316–317. doi: 10.1128/jb.82.2.316-317.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Suzue G., Tsukada K., Nakai C., Tanaka S. Presence of squalene in Staphylococcus. Arch Biochem Biophys. 1968 Mar 11;123(3):644–644. doi: 10.1016/0003-9861(68)90187-2. [DOI] [PubMed] [Google Scholar]
  21. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  22. WILLIS A. T., JACOBS S. I., GOODBURN G. M. PIGMENT PRODUCTION, ENZYMATIC ACTIVITY AND ANTIBIOTIC SENSITIVITY OF STAPHYLOCOCCI: SUBDIVISION OF THE PATHOGENIC GROUP. J Pathol Bacteriol. 1964 Jan;87:157–167. doi: 10.1002/path.1700870122. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES