Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1991 Jun;63(6):923–929. doi: 10.1038/bjc.1991.202

Different mechanisms of decreased drug accumulation in doxorubicin and mitoxantrone resistant variants of the MCF7 human breast cancer cell line.

C W Taylor 1, W S Dalton 1, P R Parrish 1, M C Gleason 1, W T Bellamy 1, F H Thompson 1, D J Roe 1, J M Trent 1
PMCID: PMC1972545  PMID: 1676902

Abstract

We selected two drug resistant variants of the MCF7 human breast cancer cell line by chronic in vitro exposure to doxorubicin (MCF7/D40 cell line) and mitoxantrone (MCF7/Mitox cell line), respectively. The cell lines are similar in growth characteristics including doubling time, DNA synthetic phase and cell size. Resistance to mitoxantrone conferred only partial resistance to doxorubicin; whereas resistance selected for doxorubicin appeared to confer complete resistance to mitoxantrone. Both agents selected for cross resistance to the Vinca alkaloids. MCF7/D40 cells display a classic-multi-drug resistance phenotype with expression of P-glycoprotein, decreased drug accumulation relative to the parental line and reversal of drug accumulation and drug resistance by verapamil. MCF7/Mitox cells likewise display resistance to multiple drugs, but in contrast to MCF7/D40 cells do not express P-glycoprotein by immunoblot or RNA blot analysis. Net drug accumulation in MCF7/Mitox cells was decreased relative to the parental cells but there was no selective modulation of drug accumulation or in vitro drug resistance by the addition of verapamil. Efflux of mitoxantrone was enhanced in both the MCF7/D40 and MCF7/Mitox cell lines relative to the MCF7/S cell line. We conclude that the two drug resistant cell lines have different mechanisms of decreased drug accumulation.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberts D. S., Griffith K. S., Goodman G. E., Herman T. S., Murray E. Phase I clinical trial f mitoxantrone: a new anthracenedione anticancer drug. Cancer Chemother Pharmacol. 1980;5(1):11–15. doi: 10.1007/BF00578556. [DOI] [PubMed] [Google Scholar]
  2. Batist G., Tulpule A., Sinha B. K., Katki A. G., Myers C. E., Cowan K. H. Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells. J Biol Chem. 1986 Nov 25;261(33):15544–15549. [PubMed] [Google Scholar]
  3. Carmichael J., DeGraff W. G., Gazdar A. F., Minna J. D., Mitchell J. B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 1987 Feb 15;47(4):936–942. [PubMed] [Google Scholar]
  4. Cowan K. H., Batist G., Tulpule A., Sinha B. K., Myers C. E. Similar biochemical changes associated with multidrug resistance in human breast cancer cells and carcinogen-induced resistance to xenobiotics in rats. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9328–9332. doi: 10.1073/pnas.83.24.9328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dalton W. S., Cress A. E., Alberts D. S., Trent J. M. Cytogenetic and phenotypic analysis of a human colon carcinoma cell line resistant to mitoxantrone. Cancer Res. 1988 Apr 1;48(7):1882–1888. [PubMed] [Google Scholar]
  6. Dalton W. S., Durie B. G., Alberts D. S., Gerlach J. H., Cress A. E. Characterization of a new drug-resistant human myeloma cell line that expresses P-glycoprotein. Cancer Res. 1986 Oct;46(10):5125–5130. [PubMed] [Google Scholar]
  7. Danks M. K., Yalowich J. C., Beck W. T. Atypical multiple drug resistance in a human leukemic cell line selected for resistance to teniposide (VM-26). Cancer Res. 1987 Mar 1;47(5):1297–1301. [PubMed] [Google Scholar]
  8. Deitch A. D., Law H., deVere White R. A stable propidium iodide staining procedure for flow cytometry. J Histochem Cytochem. 1982 Sep;30(9):967–972. doi: 10.1177/30.9.6182188. [DOI] [PubMed] [Google Scholar]
  9. Denizot F., Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986 May 22;89(2):271–277. doi: 10.1016/0022-1759(86)90368-6. [DOI] [PubMed] [Google Scholar]
  10. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  11. Fuqua S. A., Moretti-Rojas I. M., Schneider S. L., McGuire W. L. P-glycoprotein expression in human breast cancer cells. Cancer Res. 1987 Apr 15;47(8):2103–2106. [PubMed] [Google Scholar]
  12. Gerlach J. H., Kartner N., Bell D. R., Ling V. Multidrug resistance. Cancer Surv. 1986;5(1):25–46. [PubMed] [Google Scholar]
  13. Graham K. A., Richardson C. L., Minden M. D., Trent J. M., Buick R. N. Varying degrees of amplification of the N-ras oncogene in the human breast cancer cell line MCF-7. Cancer Res. 1985 May;45(5):2201–2205. [PubMed] [Google Scholar]
  14. Harker W. G., Slade D. L., Dalton W. S., Meltzer P. S., Trent J. M. Multidrug resistance in mitoxantrone-selected HL-60 leukemia cells in the absence of P-glycoprotein overexpression. Cancer Res. 1989 Aug 15;49(16):4542–4549. [PubMed] [Google Scholar]
  15. Kartner N., Evernden-Porelle D., Bradley G., Ling V. Detection of P-glycoprotein in multidrug-resistant cell lines by monoclonal antibodies. 1985 Aug 29-Sep 4Nature. 316(6031):820–823. doi: 10.1038/316820a0. [DOI] [PubMed] [Google Scholar]
  16. Krishan A. Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol. 1975 Jul;66(1):188–193. doi: 10.1083/jcb.66.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Malinin T. I., Perry V. P. A review of tissue and organ viability assay. Cryobiology. 1967 Nov-Dec;4(3):104–115. doi: 10.1016/s0011-2240(67)80140-8. [DOI] [PubMed] [Google Scholar]
  20. McGrath T., Center M. S. Mechanisms of multidrug resistance in HL60 cells: evidence that a surface membrane protein distinct from P-glycoprotein contributes to reduced cellular accumulation of drug. Cancer Res. 1988 Jul 15;48(14):3959–3963. [PubMed] [Google Scholar]
  21. Mirski S. E., Gerlach J. H., Cole S. P. Multidrug resistance in a human small cell lung cancer cell line selected in adriamycin. Cancer Res. 1987 May 15;47(10):2594–2598. [PubMed] [Google Scholar]
  22. Osborne C. K., Hobbs K., Trent J. M. Biological differences among MCF-7 human breast cancer cell lines from different laboratories. Breast Cancer Res Treat. 1987;9(2):111–121. doi: 10.1007/BF01807363. [DOI] [PubMed] [Google Scholar]
  23. Pastan I., Gottesman M. Multiple-drug resistance in human cancer. N Engl J Med. 1987 May 28;316(22):1388–1393. doi: 10.1056/NEJM198705283162207. [DOI] [PubMed] [Google Scholar]
  24. Riordan J. R., Deuchars K., Kartner N., Alon N., Trent J., Ling V. Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. 1985 Aug 29-Sep 4Nature. 316(6031):817–819. doi: 10.1038/316817a0. [DOI] [PubMed] [Google Scholar]
  25. Riordan J. R., Ling V. Purification of P-glycoprotein from plasma membrane vesicles of Chinese hamster ovary cell mutants with reduced colchicine permeability. J Biol Chem. 1979 Dec 25;254(24):12701–12705. [PubMed] [Google Scholar]
  26. Sedlak J., Lindsay R. H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem. 1968 Oct 24;25(1):192–205. doi: 10.1016/0003-2697(68)90092-4. [DOI] [PubMed] [Google Scholar]
  27. Shenkenberg T. D., Von Hoff D. D. Mitoxantrone: a new anticancer drug with significant clinical activity. Ann Intern Med. 1986 Jul;105(1):67–81. doi: 10.7326/0003-4819-105-1-67. [DOI] [PubMed] [Google Scholar]
  28. Slovak M. L., Hoeltge G. A., Dalton W. S., Trent J. M. Pharmacological and biological evidence for differing mechanisms of doxorubicin resistance in two human tumor cell lines. Cancer Res. 1988 May 15;48(10):2793–2797. [PubMed] [Google Scholar]
  29. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Trent J. M., Thompson F. H. Methods for chromosome banding of human and experimental tumors in vitro. Methods Enzymol. 1987;151:267–279. doi: 10.1016/s0076-6879(87)51023-0. [DOI] [PubMed] [Google Scholar]
  31. Wallace R. E., Lindh D., Durr F. E. Development of resistance and characteristics of a human colon carcinoma subline resistant to mitoxantrone in vitro. Cancer Invest. 1987;5(5):417–428. doi: 10.3109/07357908709032899. [DOI] [PubMed] [Google Scholar]
  32. Yap H. Y., Blumenschein G. R., Schell F. C., Buzdar A. U., Valdivieso M., Bodey G. P. Dihydroxyanthracenedione: a promising new drug in the treatment of metastatic breast cancer. Ann Intern Med. 1981 Dec;95(6):694–697. doi: 10.7326/0003-4819-95-6-694. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES