Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1984 Aug;50(2):167–177. doi: 10.1038/bjc.1984.159

Karyotype analysis of carcinogen-treated Chinese hamster cells in vitro evolving from a normal to a malignant phenotype.

J R Connell
PMCID: PMC1976868  PMID: 6432030

Abstract

The relationship of cytogenetic changes with the acquisition of an indefinite life span in vitro, the ability of cells to grow in soft agar and their tumourigenicity in syngeneic animals has been studied in control, trans-7,8-dihydrodiolbenzo(a)pyrene and 7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo(a)-pyrene-treated secondary cultures derived from Chinese hamster embryonic lung. Karyotype analysis revealed a sequence of chromosome changes as the cells progressed through culture. Aneuploidy, namely trisomy of chromosome 4, the long arm in particular, was an early dominant change. The possible association of this trisomy with the acquisition of immortality in vitro is implicated, although the involvement of other nonrandom chromosome changes cannot be eliminated, implying that there may be several genomic sites in the Chinese hamster which may potentially be involved with the acquisition of unlimited growth potential. Neither the ability of cells to grow in soft agar nor as tumours could be associated with any specific chromosome(s). Double minutes were observed in metaphases from the cell lines, agar colonies and tumours; their possible relationship with growth advantage is discussed.

Full text

PDF
167

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balaban-Malenbaum G., Gilbert F. Double minute chromosomes and the homogeneously staining regions in chromosomes of a human neuroblastoma cell line. Science. 1977 Nov 18;198(4318):739–741. doi: 10.1126/science.71759. [DOI] [PubMed] [Google Scholar]
  2. Barrett J. C. The progressive nature of neoplastic transformation of Syrian hamster embryo cells in culture. Prog Exp Tumor Res. 1979;24:17–27. doi: 10.1159/000402080. [DOI] [PubMed] [Google Scholar]
  3. Barrett J. C., Ts'o P. O. Evidence for the progressive nature of neoplastic transformation in vitro. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3761–3765. doi: 10.1073/pnas.75.8.3761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barrett J. C., Ts'o P. O. Relationship between somatic mutation and neoplastic transformation. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3297–3301. doi: 10.1073/pnas.75.7.3297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benedict W. F., Rucker N., Mark C., Kouri R. E. Correlation between balance of specific chromosomes and expression of malignancy in hamster cells. J Natl Cancer Inst. 1975 Jan;54(1):157–162. doi: 10.1093/jnci/54.1.157. [DOI] [PubMed] [Google Scholar]
  6. Bloch-Shtacher N., Sachs L. Chromosome balance and the control of malignancy. J Cell Physiol. 1976 Jan;87(1):89–100. doi: 10.1002/jcp.1040870112. [DOI] [PubMed] [Google Scholar]
  7. Bloch-Shtacher N., Sachs L. Identification of a chromosome that controls malignancy in Chinese hamster cells. J Cell Physiol. 1977 Nov;93(2):205–212. doi: 10.1002/jcp.1040930206. [DOI] [PubMed] [Google Scholar]
  8. Chen T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp Cell Res. 1977 Feb;104(2):255–262. doi: 10.1016/0014-4827(77)90089-1. [DOI] [PubMed] [Google Scholar]
  9. Codish S. D., Paul B. Reversible appearance of a specific chromosome which suppresses malignancy. Nature. 1974 Dec 13;252(5484):610–612. doi: 10.1038/252610a0. [DOI] [PubMed] [Google Scholar]
  10. Connell J. R., Ockey C. H. Analysis of karyotype variation following carcinogen treatment of Chinese hamster primary cell lines. Int J Cancer. 1977 Nov 15;20(5):768–779. doi: 10.1002/ijc.2910200517. [DOI] [PubMed] [Google Scholar]
  11. Cowell J. K. A new chromosome region possibly derived from double minutes in an in vitro transformed epithelial cell line. Cytogenet Cell Genet. 1980;27(1):2–7. doi: 10.1159/000131458. [DOI] [PubMed] [Google Scholar]
  12. Hitotsumachi S., Rabinowitz Z., Sachs L. Chromosomal control of chemical carcinogenesis. Int J Cancer. 1972 Mar 15;9(2):305–315. doi: 10.1002/ijc.2910090208. [DOI] [PubMed] [Google Scholar]
  13. Hitotsumachi S., Rabinowitz Z., Sachs L. Ciromosomal control of reversion in transformed cells. Nature. 1971 Jun 25;231(5304):511–514. doi: 10.1038/231511a0. [DOI] [PubMed] [Google Scholar]
  14. Kato H., Yosida T. H. Banding patterns of Chinese hamster chromosomes revealed by new techniques. Chromosoma. 1972;36(3):272–280. doi: 10.1007/BF00283246. [DOI] [PubMed] [Google Scholar]
  15. Kirkland D. J., Venitt S. Chemical transformation of Chinese hamster cells: II. Appearance of marker chromosomes in transformed cells. Br J Cancer. 1976 Aug;34(2):145–152. doi: 10.1038/bjc.1976.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lehman J. M., Trevor K. Karyology and tumorigenicity of a simian virus 40-transformed Chinese hamster cell clone. J Cell Physiol. 1979 Mar;98(3):443–450. doi: 10.1002/jcp.1040980302. [DOI] [PubMed] [Google Scholar]
  17. Levan A., Levan G. Large double minutes with ring-shape and rod-shape. Hereditas. 1980;92(2):259–265. doi: 10.1111/j.1601-5223.1980.tb01706.x. [DOI] [PubMed] [Google Scholar]
  18. Levan A., Levan G., Mandahl N. A new chromosome type replacing the double minutes in a mouse tumor. Cytogenet Cell Genet. 1978;20(1-6):12–23. doi: 10.1159/000130836. [DOI] [PubMed] [Google Scholar]
  19. Levan G., Mandahl N., Bengtsson B. O., Levan A. Experimental elimination and recovery of double minute chromosomes in malignant cell populations. Hereditas. 1977;86(1):75–90. doi: 10.1111/j.1601-5223.1977.tb01214.x. [DOI] [PubMed] [Google Scholar]
  20. Levan O., Levan A. Specific chromosome changes in malignancy: studies in rat sarcomas induced by two polycyclic hydrocarbons. Hereditas. 1975;79(2):161–198. doi: 10.1111/j.1601-5223.1975.tb01475.x. [DOI] [PubMed] [Google Scholar]
  21. MACPHERSON I., MONTAGNIER L. AGAR SUSPENSION CULTURE FOR THE SELECTIVE ASSAY OF CELLS TRANSFORMED BY POLYOMA VIRUS. Virology. 1964 Jun;23:291–294. doi: 10.1016/0042-6822(64)90301-0. [DOI] [PubMed] [Google Scholar]
  22. Mark J. Double-minutes--a chromosomal aberration in Rous sarcomas in mice. Hereditas. 1967;57(1):1–22. doi: 10.1111/j.1601-5223.1967.tb02091.x. [DOI] [PubMed] [Google Scholar]
  23. Newbold R. F., Overell R. W., Connell J. R. Induction of immortality is an early event in malignant transformation of mammalian cells by carcinogens. Nature. 1982 Oct 14;299(5884):633–635. doi: 10.1038/299633a0. [DOI] [PubMed] [Google Scholar]
  24. Trewyn R. W., Kerr S. J., Lehman J. M. Karyotype and tumorigenicity of 1-methylguanine-transformed Chinese hamster cells. J Natl Cancer Inst. 1979 Mar;62(3):633–638. doi: 10.1093/jnci/62.3.633. [DOI] [PubMed] [Google Scholar]
  25. Yamamoto T., Hayashi M., Rabinowitz Z., Sachs L. Chromosomal control of malignancy in tumours from cells transformed by polyoma virus. Int J Cancer. 1973 May;11(3):555–566. doi: 10.1002/ijc.2910110307. [DOI] [PubMed] [Google Scholar]
  26. Yamamoto T., Rabinowitz Z., Sachs L. Identification of the chromosomes that control malignancy. Nat New Biol. 1973 Jun 20;243(129):247–250. doi: 10.1038/newbio243247a0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES