Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1984 Oct;50(4):501–507. doi: 10.1038/bjc.1984.207

Restoration of doxorubicin responsiveness in doxorubicin-resistant P388 murine leukaemia cells.

A Ramu, R Spanier, H Rahamimoff, Z Fuks
PMCID: PMC1976913  PMID: 6487516

Abstract

The effects of certain compounds on the in vitro growth rate and the sensitivity to doxorubicin of P388 murine leukaemia cell line and of a doxorubicin-resistant subline (P388/ADR) were studied. The calcium channel blocking activity of these compounds was evaluated by measuring their effects on the sodium-dependent and membrane potential-dependent calcium uptake in synaptic plasma membrane vesicles. At non-inhibitory concentrations, verapamil, dipyridamole, meclizine and nicardipine were highly active in restoring the sensitivity to doxorubicin of P388/ADR cells. Moderately active were propranolol, N-(beta-diethylaminoethyl)-N-(beta-hydroxy-beta-phenylethyl)-2,5-dich loranaline (MDL-6792), thioridazine and chlorocyclizine, while nifedipine, guanethidine, phentolamine, chloroquine and papaverine had zero or only minimal synergistic activity to doxorubicin in this cell line. Doxorubicin synergistic activity could not be demonstrated in the parent drug-sensitive cell line. No sodium-dependent or membrane potential-dependent calcium uptake could be demonstrated in vesicles prepared from plasma membranes of either cell line. There is no correlation between the ability of these compounds to inhibit calcium uptake in synaptic vesicles and their potency in restoring the sensitivity of P388/ADR cells to doxorubicin.

Full text

PDF
501

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bereza U. L., Brewer G. J., Mizukami I. Association of calmodulin inhibition, erythrocyte membrane stabilization and pharmacological effects of drugs. Biochim Biophys Acta. 1982 Nov 8;692(2):305–314. doi: 10.1016/0005-2736(82)90535-1. [DOI] [PubMed] [Google Scholar]
  2. Born G. V., Mills D. C. Potentiation of the inhibitory effect of adenosine on platelet aggregation by drugs that prevent its uptake. J Physiol. 1969 May;202(1):41P–42P. [PubMed] [Google Scholar]
  3. Bowen D., Goldman I. D. The relationship among transport, intracellular binding, and inhibition of RNA synthesis by actinomycin D in Ehrlich ascites tumor cells in vitro. Cancer Res. 1975 Nov;35(11 Pt 1):3054–3060. [PubMed] [Google Scholar]
  4. Carlsen S. A., Till J. E., Ling V. Modulation of membrane drug permeability in Chinese hamster ovary cells. Biochim Biophys Acta. 1976 Dec 14;455(3):900–912. doi: 10.1016/0005-2736(76)90059-6. [DOI] [PubMed] [Google Scholar]
  5. Chlebowski R. T., Block J. B., Cundiff D., Dietrich M. F. Doxorubicin cytotoxicity enhanced by local anesthetics in a human melanoma cell line. Cancer Treat Rep. 1982 Jan;66(1):121–125. [PubMed] [Google Scholar]
  6. Epstein P. M., Fiss K., Hachisu R., Andrenyak D. M. Interaction of calcium antagonists with cyclic AMP phosphodiesterases and calmodulin. Biochem Biophys Res Commun. 1982 Apr 14;105(3):1142–1149. doi: 10.1016/0006-291x(82)91089-0. [DOI] [PubMed] [Google Scholar]
  7. Erdreich A., Spanier R., Rahamimoff H. The inhibition of Na-dependent Ca uptake by verapamil in synaptic plasma membrane vesicles. Eur J Pharmacol. 1983 Jun 3;90(2-3):193–202. doi: 10.1016/0014-2999(83)90237-6. [DOI] [PubMed] [Google Scholar]
  8. Fleckenstein A. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Annu Rev Pharmacol Toxicol. 1977;17:149–166. doi: 10.1146/annurev.pa.17.040177.001053. [DOI] [PubMed] [Google Scholar]
  9. Ganapathi R., Grabowski D. Enhancement of sensitivity to adriamycin in resistant P388 leukemia by the calmodulin inhibitor trifluoperazine. Cancer Res. 1983 Aug;43(8):3696–3699. [PubMed] [Google Scholar]
  10. Gill D. L., Grollman E. F., Kohn L. D. Calcium transport mechanisms in membrane vesicles from guinea pig brain synaptosomes. J Biol Chem. 1981 Jan 10;256(1):184–192. [PubMed] [Google Scholar]
  11. Inaba M., Fujikura R., Tsukagoshi S., Sakurai Y. Restored in vitro sensitivity of adriamycin- and vincristine-resistant P388 leukemia with reserpine. Biochem Pharmacol. 1981 Aug 1;30(15):2191–2194. doi: 10.1016/0006-2952(81)90246-x. [DOI] [PubMed] [Google Scholar]
  12. Johnson J. D. Allosteric interactions among drug binding sites on calmodulin. Biochem Biophys Res Commun. 1983 Apr 29;112(2):787–793. doi: 10.1016/0006-291x(83)91530-9. [DOI] [PubMed] [Google Scholar]
  13. Lauzon G. J., Paterson A. R. Binding of the nucleoside transport inhibitor nitrobenzylthioinosine to HeLa cells. Mol Pharmacol. 1977 Sep;13(5):883–891. [PubMed] [Google Scholar]
  14. Lee K. S., Tsien R. W. Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature. 1983 Apr 28;302(5911):790–794. doi: 10.1038/302790a0. [DOI] [PubMed] [Google Scholar]
  15. Medoff J., Medoff G., Goldstein M. N., Schlessinger D., Kobayaski G. S. Amphotericin B-induced sensitivity to actinomycin D in drug-resistant Hela cells. Cancer Res. 1975 Sep;35(9):2548–2552. [PubMed] [Google Scholar]
  16. Mizuno S., Ishida A. Potentiation of bleomycin cytotoxicity by membrane-interacting drugs and increased calcium ions. Biochem Biophys Res Commun. 1982 Aug;107(3):1021–1027. doi: 10.1016/0006-291x(82)90624-6. [DOI] [PubMed] [Google Scholar]
  17. Mizuno S., Ishida A. Selective enhancement of bleomycin cytotoxicity by local anesthetics. Biochem Biophys Res Commun. 1982 Mar 30;105(2):425–431. doi: 10.1016/0006-291x(82)91451-6. [DOI] [PubMed] [Google Scholar]
  18. Mizuno S., Ishida A. Selective enhancement of the cytotoxicity of the bleomycin derivative, peplomycin, by local anesthetics alone and combined with hyperthermia. Cancer Res. 1982 Nov;42(11):4726–4729. [PubMed] [Google Scholar]
  19. Ozols R. F., Hogan W. M., Grotzinger K. R., McCoy W., Young R. C. Effects of amphotericin B on adriamycin and melphalan cytotoxicity in human and murine ovarian carcinoma and in L1210 leukemia. Cancer Res. 1983 Mar;43(3):959–964. [PubMed] [Google Scholar]
  20. Phillis J. W., Wu P. H. Phenothiazines inhibit adenosine uptake by rat brain synaptosomes. Can J Physiol Pharmacol. 1981 Oct;59(10):1108–1110. doi: 10.1139/y81-170. [DOI] [PubMed] [Google Scholar]
  21. Rahamimoff H., Spanier R. Sodium-dependent calcium uptake in membrane vesicles derived from rat brain synaptosomes. FEBS Lett. 1979 Aug 1;104(1):111–114. doi: 10.1016/0014-5793(79)81094-7. [DOI] [PubMed] [Google Scholar]
  22. Ramu A., Fuks Z., Gatt S., Glaubiger D. Reversal of acquired resistance to doxorubicin in P388 murine leukemia cells by perhexiline maleate. Cancer Res. 1984 Jan;44(1):144–148. [PubMed] [Google Scholar]
  23. Ramu A., Glaubiger D., Magrath I. T., Joshi A. Plasma membrane lipid structural order in doxorubicin-sensitive and -resistant P388 cells. Cancer Res. 1983 Nov;43(11):5533–5537. [PubMed] [Google Scholar]
  24. Ramu A., Glaubiger D., Soprey P., Reaman G. H., Feuerstein N. 5'-Nucleotidase activity and arachidonate metabolism in doxorubicin sensitive and resistant P388 cells. Br J Cancer. 1984 Apr;49(4):447–451. doi: 10.1038/bjc.1984.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ramu A., Glaubiger D., Weintraub H. Differences in lipid composition of doxorubicin-sensitive and -resistant P388 cells. Cancer Treat Rep. 1984 Apr;68(4):637–641. [PubMed] [Google Scholar]
  26. Reuter H. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature. 1983 Feb 17;301(5901):569–574. doi: 10.1038/301569a0. [DOI] [PubMed] [Google Scholar]
  27. Riehm H., Biedler J. L. Potentiation of drug effect by Tween 80 in Chinese hamster cells resistant to actinomycin D and daunomycin. Cancer Res. 1972 Jun;32(6):1195–1200. [PubMed] [Google Scholar]
  28. Seeber S., Osieka R., Schmidt C. G., Achterrath W., Crooke S. T. In vivo resistance towards anthracyclines, etoposide, and cis-diamminedichloroplatinum(II). Cancer Res. 1982 Nov;42(11):4719–4725. [PubMed] [Google Scholar]
  29. Toll L. Calcium antagonists High-affinity binding and inhibition of calcium transport in a clonal cell line. J Biol Chem. 1982 Nov 25;257(22):13189–13192. [PubMed] [Google Scholar]
  30. Tsuruo T., Iida H., Nojiri M., Tsukagoshi S., Sakurai Y. Circumvention of vincristine and Adriamycin resistance in vitro and in vivo by calcium influx blockers. Cancer Res. 1983 Jun;43(6):2905–2910. [PubMed] [Google Scholar]
  31. Tsuruo T., Iida H., Tsukagoshi S., Sakurai Y. Increased accumulation of vincristine and adriamycin in drug-resistant P388 tumor cells following incubation with calcium antagonists and calmodulin inhibitors. Cancer Res. 1982 Nov;42(11):4730–4733. [PubMed] [Google Scholar]
  32. Tsuruo T., Iida H., Tsukagoshi S., Sakurai Y. Potentiation of vincristine and Adriamycin effects in human hemopoietic tumor cell lines by calcium antagonists and calmodulin inhibitors. Cancer Res. 1983 May;43(5):2267–2272. [PubMed] [Google Scholar]
  33. Valeriote F., Medoff G., Dieckman J. Potentiation of anticancer agent cytotoxicity against sensitive and resistant AKR leukemia by amphotericin B1. Cancer Res. 1979 Jun;39(6 Pt 1):2041–2045. [PubMed] [Google Scholar]
  34. Vincenzi F. F., Adunyah E. S., Niggli V., Carafoli E. Purified red blood cell Ca2+-pump ATPase: evidence for direct inhibition by presumed anti-calmodulin drugs in the absence of calmodulin. Cell Calcium. 1982 Dec;3(6):545–559. doi: 10.1016/0143-4160(82)90044-6. [DOI] [PubMed] [Google Scholar]
  35. Vincenzi F. F. Calmodulin pharmacology. Cell Calcium. 1981 Aug;2(4):387–409. doi: 10.1016/0143-4160(81)90027-0. [DOI] [PubMed] [Google Scholar]
  36. Volpi M., Sha'afi R. I., Epstein P. M., Andrenyak D. M., Feinstein M. B. Local anesthetics, mepacrine, and propranolol are antagonists of calmodulin. Proc Natl Acad Sci U S A. 1981 Feb;78(2):795–799. doi: 10.1073/pnas.78.2.795. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES