Abstract
SDZ 280-446 is a semi-synthetic derivative of a natural cyclic peptolide. Its ability to sensitise in vitro tumour cells whose resistance is due to P-glycoprotein-mediated anticancer-drug efflux was shown using four different pairs of parental drug-sensitive (Par-) and multidrug-resistant (MDR-) cell lines, from three different species (mouse, human, Chinese hamster) representing four different cell lineages (monocytic leukaemia, nasopharyngeal epithelial carcinoma, colon epithelial carcinoma, ovary fibroblastoid carcinoma), and using four different drug classes (colchicine, vincristine, daunomycin/doxorubicin and etoposide). By measuring its capacity to restore normal drug sensitivity of MDR-cells in culture in vitro, it appeared that SDZ 280-446 belongs to the same class of very potent chemosensitisers as the cyclosporin derivative SDZ PSC 833: both are about one order of magnitude more active than cyclosporin A (CsA), which is itself about one order of magnitude more active than other known chemosensitisers (including verapamil, quinidine and amiodarone which have already entered clinical trials in MDR reversal). Low concentrations of SDZ 280-446 could also restore cellular daunomycin retention in MDR-P388 cells to the levels found in the Par-P388 cells. SDZ 280-446 was also effective as a chemosensitiser when given orally in vivo. In a syngeneic mouse model, combined therapy with vinca alkaloids given i.p. and SDZ 280-446 given per os for 5 consecutive days significantly prolonged the survival of MDR-P388 tumour-bearing mice, when compared with mice receiving vinca alkaloids alone. Another protocol, using three cycles of i.p. doxorubicin at 4 day intervals, could also not increase MDR-P388 tumour-bearing mouse survival unless the mice received SDZ 280-446 orally 4 h before each doxorubicin injection. Though only very few combined therapy treatment protocols have been tested so far, clear increases in survival time of MDR-tumour-bearing mice were regularly obtained, leaving hope for major improvement of the therapy using other dosing schedules.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bellamy W. T., Dalton W. S., Dorr R. T. The clinical relevance of multidrug resistance. Cancer Invest. 1990;8(5):547–562. doi: 10.3109/07357909009012080. [DOI] [PubMed] [Google Scholar]
- Boesch D., Gavériaux C., Jachez B., Pourtier-Manzanedo A., Bollinger P., Loor F. In vivo circumvention of P-glycoprotein-mediated multidrug resistance of tumor cells with SDZ PSC 833. Cancer Res. 1991 Aug 15;51(16):4226–4233. [PubMed] [Google Scholar]
- Boesch D., Muller K., Pourtier-Manzanedo A., Loor F. Restoration of daunomycin retention in multidrug-resistant P388 cells by submicromolar concentrations of SDZ PSC 833, a nonimmunosuppressive cyclosporin derivative. Exp Cell Res. 1991 Sep;196(1):26–32. doi: 10.1016/0014-4827(91)90452-z. [DOI] [PubMed] [Google Scholar]
- Bradley G., Juranka P. F., Ling V. Mechanism of multidrug resistance. Biochim Biophys Acta. 1988 Aug 3;948(1):87–128. doi: 10.1016/0304-419x(88)90006-6. [DOI] [PubMed] [Google Scholar]
- Endicott J. A., Ling V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem. 1989;58:137–171. doi: 10.1146/annurev.bi.58.070189.001033. [DOI] [PubMed] [Google Scholar]
- Ford J. M., Prozialeck W. C., Hait W. N. Structural features determining activity of phenothiazines and related drugs for inhibition of cell growth and reversal of multidrug resistance. Mol Pharmacol. 1989 Jan;35(1):105–115. [PubMed] [Google Scholar]
- Foxwell B. M., Mackie A., Ling V., Ryffel B. Identification of the multidrug resistance-related P-glycoprotein as a cyclosporine binding protein. Mol Pharmacol. 1989 Oct;36(4):543–546. [PubMed] [Google Scholar]
- Gavériaux C., Boesch D., Boelsterli J. J., Bollinger P., Eberle M. K., Hiestand P., Payne T., Traber R., Wenger R., Loor F. Overcoming multidrug resistance in Chinese hamster ovary cells in vitro by cyclosporin A (Sandimmune) and non-immunosuppressive derivatives. Br J Cancer. 1989 Dec;60(6):867–871. doi: 10.1038/bjc.1989.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Georges E., Sharom F. J., Ling V. Multidrug resistance and chemosensitization: therapeutic implications for cancer chemotherapy. Adv Pharmacol. 1990;21:185–220. doi: 10.1016/s1054-3589(08)60343-9. [DOI] [PubMed] [Google Scholar]
- Hofsli E., Nissen-Meyer J. Reversal of multidrug resistance by lipophilic drugs. Cancer Res. 1990 Jul 1;50(13):3997–4002. [PubMed] [Google Scholar]
- Juranka P. F., Zastawny R. L., Ling V. P-glycoprotein: multidrug-resistance and a superfamily of membrane-associated transport proteins. FASEB J. 1989 Dec;3(14):2583–2592. doi: 10.1096/fasebj.3.14.2574119. [DOI] [PubMed] [Google Scholar]
- Kanamaru H., Kakehi Y., Yoshida O., Nakanishi S., Pastan I., Gottesman M. M. MDR1 RNA levels in human renal cell carcinomas: correlation with grade and prediction of reversal of doxorubicin resistance by quinidine in tumor explants. J Natl Cancer Inst. 1989 Jun 7;81(11):844–849. doi: 10.1093/jnci/81.11.844. [DOI] [PubMed] [Google Scholar]
- Moscow J. A., Cowan K. H. Multidrug resistance. Cancer Chemother Biol Response Modif. 1990;11:97–114. [PubMed] [Google Scholar]
- Shinoda H., Inaba M., Tsuruo T. In vivo circumvention of vincristine resistance in mice with P388 leukemia using a novel compound, AHC-52. Cancer Res. 1989 Apr 1;49(7):1722–1726. [PubMed] [Google Scholar]
- Takahashi N., Hayano T., Suzuki M. Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin. Nature. 1989 Feb 2;337(6206):473–475. doi: 10.1038/337473a0. [DOI] [PubMed] [Google Scholar]
- Tsuruo T., Iida H., Tsukagoshi S., Sakurai Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 1981 May;41(5):1967–1972. [PubMed] [Google Scholar]
- Twentyman P. R. A possible role for cyclosporins in cancer chemotherapy. Anticancer Res. 1988 Sep-Oct;8(5A):985–993. [PubMed] [Google Scholar]
- Zamora J. M., Pearce H. L., Beck W. T. Physical-chemical properties shared by compounds that modulate multidrug resistance in human leukemic cells. Mol Pharmacol. 1988 Apr;33(4):454–462. [PubMed] [Google Scholar]
