Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1992 May;65(5):641–648. doi: 10.1038/bjc.1992.138

Sequential alteration of peanut agglutinin binding-glycoprotein expression during progression of murine mammary neoplasia.

J W Rak 1, D McEachern 1, F R Miller 1
PMCID: PMC1977372  PMID: 1586590

Abstract

A sequential, quantitative loss of Peanut agglutinin (PNA) binding with progression of mouse mammary cells from normal to preneoplastic to neoplastic phenotypes was observed. Normal mammary epithelium, preneoplastic mammary lesions designated D2HAN (D2-type hyperplastic alveolar nodules) and a series of nine spontaneous tumours (D2ST1, D2ST2, D2ST3, D2ST4, D2A1, D2F2, D2.0R, D2.1, EMT6R08) derived from mice bearing D2HAN were grown in culture and analysed by flow cytometry with respect to PNA binding intensity to the cell surface. Primary cultures of normal mammary epithelium strongly bound PNA. A stepwise decrease in PNA binding by preneoplastic D2HAN cells and subsequent tumours arising from those hyperplastic lesions was observed. Three cloned tumour subpopulations derived from such tumours exhibited dramatic differences in PNA binding ranging from high (D2.0R) to low (D2.1) to very low (D2A1 cells). Their growth rate in vitro was similar. However, an inverse correlation between PNA binding and malignant characteristics, such as the incidence and latency of subcutaneous tumours and the efficiency of the tumour cells to form lung colonies after i.v. injection, existed. Cells subsequently derived from tumours resulting from injection of the D2.0R clone (high PNA binding, low tumorigenicity) were found to have diminished PNA binding properties and to be more tumorigenic when reimplanted into syngeneic mice. The difference in PNA binding (up to 50-fold) between normal mammary cells and other mouse mammary tumour cells, i.e., unrelated to D2HAN lesions, was also seen. These include six sister subpopulations derived from a single BALB/cfC3H mouse mammary tumour (lines: 67, 66c14, 168FARN, 4TO7, 68H, 64pT) as well as SP1 spontaneous CBA/J mouse mammary carcinoma. The difference was greatly reduced by neuraminidase treatment suggesting a masking of PNA binding sites by sialic acid. Separation of cell lysates by SDS-PAGE revealed a high molecular weight PNA binding glycoprotein (greater than 250 kd) expressed by normal mammary epithelium and preneoplastic D2HAN cells, but not by tumour cells regardless of neuraminidase treatment. A PNA reactive glycoprotein of approximately 90 kd was uniquely expressed in normal mammary epithelial lysates, although neuraminidase treatment exposed a similar band in a few tumour lines. Normal mammary epithelium, preneoplastic D2HAN cells, and the poorly tumorigenic clone D2.0R expressed a PNA binding glycoprotein of approximately 150 kd. This band appeared to be specifically sialylated during transition from the high PNA binding, low tumorigenic phenotype of D2.0R cells to the low PNA binding, highly tumorigenic phenotype of cells isolated from tumours resulting from s.c. implantation of D2.0R cells.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
641

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alroy J., Goyal V., Skutelsky E. Lectin histochemistry of mammalian endothelium. Histochemistry. 1987;86(6):603–607. doi: 10.1007/BF00489554. [DOI] [PubMed] [Google Scholar]
  2. Badenoch-Jones P., Claudianos C., Ramshaw I. A. Lectin-binding characteristics of related high- and low-metastatic rat mammary adenocarcinoma cell lines. Invasion Metastasis. 1987;7(5):284–296. [PubMed] [Google Scholar]
  3. Benedetto A., Elia G., Sala A., Belardelli F. Hyposialylation of high-molecular-weight membrane glycoproteins parallels the loss of metastatic potential in wheat-germ agglutinin-resistant Friend leukemia cells. Int J Cancer. 1989 Jan 15;43(1):126–133. doi: 10.1002/ijc.2910430124. [DOI] [PubMed] [Google Scholar]
  4. Bolscher J. G., van der Bijl M. M., Neefjes J. J., Hall A., Smets L. A., Ploegh H. L. Ras (proto)oncogene induces N-linked carbohydrate modification: temporal relationship with induction of invasive potential. EMBO J. 1988 Nov;7(11):3361–3368. doi: 10.1002/j.1460-2075.1988.tb03208.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bresalier R. S., Rockwell R. W., Dahiya R., Duh Q. Y., Kim Y. S. Cell surface sialoprotein alterations in metastatic murine colon cancer cell lines selected in an animal model for colon cancer metastasis. Cancer Res. 1990 Feb 15;50(4):1299–1307. [PubMed] [Google Scholar]
  6. Brown T. A., Bouchard T., St John T., Wayner E., Carter W. G. Human keratinocytes express a new CD44 core protein (CD44E) as a heparan-sulfate intrinsic membrane proteoglycan with additional exons. J Cell Biol. 1991 Apr;113(1):207–221. doi: 10.1083/jcb.113.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Buckley N. D., Carlsen S. A. Involvement of soybean agglutinin binding cells in the lymphatic metastasis of the R3230AC rat mammary adenocarcinoma. Cancer Res. 1988 Mar 15;48(6):1451–1455. [PubMed] [Google Scholar]
  8. Chen L. C., Dollbaum C., Smith H. S. Loss of heterozygosity on chromosome 1q in human breast cancer. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7204–7207. doi: 10.1073/pnas.86.18.7204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dexter D. L., Kowalski H. M., Blazar B. A., Fligiel Z., Vogel R., Heppner G. H. Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res. 1978 Oct;38(10):3174–3181. [PubMed] [Google Scholar]
  10. Diamond M. S., Staunton D. E., Marlin S. D., Springer T. A. Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell. 1991 Jun 14;65(6):961–971. doi: 10.1016/0092-8674(91)90548-d. [DOI] [PubMed] [Google Scholar]
  11. Elliott B. E., Maxwell L., Arnold M., Wei W. Z., Miller F. R. Expression of epithelial-like markers and class I major histocompatibility antigens by a murine carcinoma growing in the mammary gland and in metastases: orthotopic site effects. Cancer Res. 1988 Dec 15;48(24 Pt 1):7237–7245. [PubMed] [Google Scholar]
  12. Feizi T. Carbohydrate antigens in human cancer. Cancer Surv. 1985;4(1):245–269. [PubMed] [Google Scholar]
  13. Feizi T. Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature. 1985 Mar 7;314(6006):53–57. doi: 10.1038/314053a0. [DOI] [PubMed] [Google Scholar]
  14. Franklin W. A. Tissue binding of lectins in disorders of the breast. Cancer. 1983 Jan 15;51(2):295–300. doi: 10.1002/1097-0142(19830115)51:2<295::aid-cncr2820510222>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
  15. Friedman J., Levinsky H., Allalouf D., Staroselsky A. Sialic acid content in mouse myeloma cells and derived B-cell hybridomas with different metastatic potentials. Cancer Lett. 1988 Dec 1;43(1-2):79–84. doi: 10.1016/0304-3835(88)90217-0. [DOI] [PubMed] [Google Scholar]
  16. Galili U., Macher B. A. Interaction between anti-Gal and human tumor cells: a natural defense mechanism? J Natl Cancer Inst. 1989 Feb 1;81(3):178–179. doi: 10.1093/jnci/81.3.178. [DOI] [PubMed] [Google Scholar]
  17. Gooi H. C., Jones N. J., Hounsell E. F., Scudder P., Hilkens J., Hilgers J., Feizi T. Novel antigenic specificity involving the blood group antigen, Lea, in combination with onco-developmental antigen, SSEA-1, recognized by two monoclonal antibodies to human milk-fat globule membranes. Biochem Biophys Res Commun. 1985 Sep 16;131(2):543–550. doi: 10.1016/0006-291x(85)91270-7. [DOI] [PubMed] [Google Scholar]
  18. Hakomori S. Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv Cancer Res. 1989;52:257–331. doi: 10.1016/s0065-230x(08)60215-8. [DOI] [PubMed] [Google Scholar]
  19. Howard D. R., Ferguson P., Batsakis J. G. Carcinoma-associated cytostructural antigenic alterations: detection by lectin binding. Cancer. 1981 Jun 15;47(12):2872–2877. doi: 10.1002/1097-0142(19810615)47:12<2872::aid-cncr2820471220>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
  20. Kinoshita Y., Sato S., Takeuchi T. Cellular sialic acid level and phenotypic expression in B16 melanoma cells: comparison of spontaneous variations and bromodeoxyuridine- and theophylline-induced changes. Cell Struct Funct. 1989 Feb;14(1):35–43. doi: 10.1247/csf.14.35. [DOI] [PubMed] [Google Scholar]
  21. Kuratsu J., Sueyoshi N., Mihara Y., Ushio Y. Localization and significance of peanut agglutinin-binding sites on ependymoma cells. Acta Neuropathol. 1990;79(6):634–639. doi: 10.1007/BF00294241. [DOI] [PubMed] [Google Scholar]
  22. Larsen E., Palabrica T., Sajer S., Gilbert G. E., Wagner D. D., Furie B. C., Furie B. PADGEM-dependent adhesion of platelets to monocytes and neutrophils is mediated by a lineage-specific carbohydrate, LNF III (CD15). Cell. 1990 Nov 2;63(3):467–474. doi: 10.1016/0092-8674(90)90443-i. [DOI] [PubMed] [Google Scholar]
  23. Loeffler D. A., Keng P. C., Baggs R. B., Lord E. M. Lymphocytic infiltration and cytotoxicity under hypoxic conditions in the EMT6 mouse mammary tumor. Int J Cancer. 1990 Mar 15;45(3):462–467. doi: 10.1002/ijc.2910450315. [DOI] [PubMed] [Google Scholar]
  24. Mahoney K. H., Miller B. E., Heppner G. H. FACS quantitation of leucine aminopeptidase and acid phosphatase on tumor-associated macrophages from metastatic and nonmetastatic mouse mammary tumors. J Leukoc Biol. 1985 Nov;38(5):573–585. doi: 10.1002/jlb.38.5.573. [DOI] [PubMed] [Google Scholar]
  25. McKenzie I. F., Xing P. X. Mucins in breast cancer: recent immunological advances. Cancer Cells. 1990 Mar;2(3):75–78. [PubMed] [Google Scholar]
  26. Miller B. E., Aslakson C. J., Miller F. R. Efficient recovery of clonogenic stem cells from solid tumors and occult metastatic deposits. Invasion Metastasis. 1990;10(2):101–112. [PubMed] [Google Scholar]
  27. Miller F. R., McInerney D. Epithelial component of host-tumor interactions in the orthotopic site preference of a mouse mammary tumor. Cancer Res. 1988 Jul 1;48(13):3698–3701. [PubMed] [Google Scholar]
  28. Miller F. R., McInerney D., Rogers C., Miller B. E. Spontaneous fusion between metastatic mammary tumor subpopulations. J Cell Biochem. 1988 Feb;36(2):129–136. doi: 10.1002/jcb.240360204. [DOI] [PubMed] [Google Scholar]
  29. Müller-Holzner E., Marth C., Kofler E., Daxenbichler G., Hofstädter F. Lectin binding sites in cultured human breast cancer cells. Breast Cancer Res Treat. 1985;5(3):277–283. doi: 10.1007/BF01806022. [DOI] [PubMed] [Google Scholar]
  30. Nagafuchi A., Shirayoshi Y., Okazaki K., Yasuda K., Takeichi M. Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA. Nature. 1987 Sep 24;329(6137):341–343. doi: 10.1038/329341a0. [DOI] [PubMed] [Google Scholar]
  31. Newman R. A., Klein P. J., Rudland P. S. Binding of peanut lectin to breast epithelium, human carcinomas, and a cultured rat mammary stem cell: use of the lectin as a marker of mammary differentiation. J Natl Cancer Inst. 1979 Dec;63(6):1339–1346. [PubMed] [Google Scholar]
  32. Oz O. K., Campbell A., Tao T. W. Reduced cell adhesion to fibronectin and laminin is associated with altered glycosylation of beta 1 integrins in a weakly metastatic glycosylation mutant. Int J Cancer. 1989 Aug 15;44(2):343–347. doi: 10.1002/ijc.2910440226. [DOI] [PubMed] [Google Scholar]
  33. Passaniti A., Hart G. W. Cell surface sialylation and tumor metastasis. Metastatic potential of B16 melanoma variants correlates with their relative numbers of specific penultimate oligosaccharide structures. J Biol Chem. 1988 Jun 5;263(16):7591–7603. [PubMed] [Google Scholar]
  34. Rabinowitz S. S., Gordon S. Macrosialin, a macrophage-restricted membrane sialoprotein differentially glycosylated in response to inflammatory stimuli. J Exp Med. 1991 Oct 1;174(4):827–836. doi: 10.1084/jem.174.4.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rak J. W., Basolo F., Elliott J. W., Russo J., Miller F. R. Cell surface glycosylation changes accompanying immortalization and transformation of normal human mammary epithelial cells. Cancer Lett. 1991 Apr;57(1):27–36. doi: 10.1016/0304-3835(91)90059-q. [DOI] [PubMed] [Google Scholar]
  36. Rak J., Kuśnierczyk H., Strzadała L., Radzikowski C. Transplantable mouse 16/C mammary adenocarcinoma as a model in experimental cancer therapy. I. Kinetics of growth and spread. Arch Immunol Ther Exp (Warsz) 1988;36(3):325–334. [PubMed] [Google Scholar]
  37. Raz A., Pazerini G., Carmi P. Identification of the metastasis-associated, galactoside-binding lectin as a chimeric gene product with homology to an IgE-binding protein. Cancer Res. 1989 Jul 1;49(13):3489–3493. [PubMed] [Google Scholar]
  38. Reimann J., Ehman D., Miller R. G. Differential binding of lectins to lymphopoietic and myelopoietic cells in murine marrow as revealed by flow cytometry. Cytometry. 1984 Mar;5(2):194–203. doi: 10.1002/cyto.990050214. [DOI] [PubMed] [Google Scholar]
  39. Rockwell S. C., Kallman R. F., Fajardo L. F. Characteristics of a serially transplanted mouse mammary tumor and its tissue-culture-adapted derivative. J Natl Cancer Inst. 1972 Sep;49(3):735–749. [PubMed] [Google Scholar]
  40. Rudland P. S., Hughes C. M., Ferns S. A., Warburton M. J. Characterization of human mammary cell types in primary culture: immunofluorescent and immunocytochemical indicators of cellular heterogeneity. In Vitro Cell Dev Biol. 1989 Jan;25(1):23–36. doi: 10.1007/BF02624407. [DOI] [PubMed] [Google Scholar]
  41. Rudland P. S. Stem cells and the development of mammary cancers in experimental rats and in humans. Cancer Metastasis Rev. 1987;6(1):55–83. doi: 10.1007/BF00047609. [DOI] [PubMed] [Google Scholar]
  42. Russo J., Reina D., Frederick J., Russo I. H. Expression of phenotypical changes by human breast epithelial cells treated with carcinogens in vitro. Cancer Res. 1988 May 15;48(10):2837–2857. [PubMed] [Google Scholar]
  43. Smets L. A., Van Beek W. P. Carbohydrates of the tumor cell surface. Biochim Biophys Acta. 1984;738(4):237–249. doi: 10.1016/0304-419x(83)90006-9. [DOI] [PubMed] [Google Scholar]
  44. Sonnenberg A., Daams H., Van der Valk M. A., Hilkens J., Hilgers J. Development of mouse mammary gland: identification of stages in differentiation of luminal and myoepithelial cells using monoclonal antibodies and polyvalent antiserum against keratin. J Histochem Cytochem. 1986 Aug;34(8):1037–1046. doi: 10.1177/34.8.2426332. [DOI] [PubMed] [Google Scholar]
  45. Springer G. F. T and Tn, general carcinoma autoantigens. Science. 1984 Jun 15;224(4654):1198–1206. doi: 10.1126/science.6729450. [DOI] [PubMed] [Google Scholar]
  46. Steck P. A., Nicolson G. L. Cell surface glycoproteins of 13762NF mammary adenocarcinoma clones of differing metastatic potentials. Exp Cell Res. 1983 Sep;147(2):255–267. doi: 10.1016/0014-4827(83)90208-2. [DOI] [PubMed] [Google Scholar]
  47. Tressler R. J., Nicolson G. L. Cell surface biochemical and metastatic properties of Lens culinaris hemagglutinin-binding variants of a murine large cell lymphoma. Invasion Metastasis. 1988;8(6):351–363. [PubMed] [Google Scholar]
  48. Yogeeswaran G. Cell surface glycolipids and glycoproteins in malignant transformation. Adv Cancer Res. 1983;38:289–350. doi: 10.1016/s0065-230x(08)60191-8. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES