Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1992 Oct;66(4):758–764. doi: 10.1038/bjc.1992.352

Increased p53 protein content of colorectal tumours correlates with poor survival.

Y Remvikos 1, O Tominaga 1, P Hammel 1, P Laurent-Puig 1, R J Salmon 1, B Dutrillaux 1, G Thomas 1
PMCID: PMC1977434  PMID: 1419618

Abstract

Allelic losses on the short arm of chromosome 17 occur frequently in colorectal cancers. Despite the existence of other common molecular events such as loss of the long arms of chromosomes 18 and 5, it has been demonstrated that the former has the greatest prognostic significance. Of the various genes mapping to the commonly deleted sequence, the best candidate as a 'target' seems to be the p53 antioncogene. We applied our methods of detection of the p53 protein in a series of 78 colorectal cancers stored in a tumour bank from 1985 to 1989, for which the median follow-up was 42 months. Nuclear-attached p53 was quantified by flow cytometry and soluble p53 was assayed by ELISA. Both assays used a monoclonal antibody considered to be specific for a conformational epitope present only on the mutated protein. Fifty of the 78 tumours (64%) were found to present significant levels of p53 attached to the nucleus. A further two tumours contained high levels of p53 only in their soluble fraction. Thus, 52 out of 78 cancers (67%) were considered to be positive for p53. The p53 content correlated with 17p loss (P < 0.002), hyperdiploid DNA content (P < 0.001) and tumour site (P < 0.03), but not Dukes' stage (P = 0.15). p53 negative cases had a better overall survival than p53 positive ones (P < 0.03). When the 14 stage D tumours were excluded from the analysis, p53 was no longer significantly predictive of survival (P < 0.07), but remained predictive of recurrence (P < 0.02) and metastasis (P < 0.03). Multivariate analysis was not performed because of the small number of cases. Overall, disease-free and metastasis-free survival were compared to the positivity obtained either with pAb 421 and/or 1801 or pAb 240 since all three were used in the flow cytometric analysis, defining subsets of 421-, 1801+ and 421-, 1801-, 240+. The presence of nuclear protein presenting the mutation-specific epitope, recognised by pAb 240, was found to be the most discriminant. It must be noted that univariate survival analysis demonstrated that more than 80% of patients with p53-negative tumours were alive at 3 years vs less than 50% in the p53-positive group. A large prospective study should be conducted to define the exact prognostic significance of the p53 content of colorectal carcinomas.

Full text

PDF
758

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker S. J., Fearon E. R., Nigro J. M., Hamilton S. R., Preisinger A. C., Jessup J. M., vanTuinen P., Ledbetter D. H., Barker D. F., Nakamura Y. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science. 1989 Apr 14;244(4901):217–221. doi: 10.1126/science.2649981. [DOI] [PubMed] [Google Scholar]
  2. Baker S. J., Markowitz S., Fearon E. R., Willson J. K., Vogelstein B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990 Aug 24;249(4971):912–915. doi: 10.1126/science.2144057. [DOI] [PubMed] [Google Scholar]
  3. Baker S. J., Preisinger A. C., Jessup J. M., Paraskeva C., Markowitz S., Willson J. K., Hamilton S., Vogelstein B. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res. 1990 Dec 1;50(23):7717–7722. [PubMed] [Google Scholar]
  4. Bartek J., Iggo R., Gannon J., Lane D. P. Genetic and immunochemical analysis of mutant p53 in human breast cancer cell lines. Oncogene. 1990 Jun;5(6):893–899. [PubMed] [Google Scholar]
  5. Chen P. L., Chen Y. M., Bookstein R., Lee W. H. Genetic mechanisms of tumor suppression by the human p53 gene. Science. 1990 Dec 14;250(4987):1576–1580. doi: 10.1126/science.2274789. [DOI] [PubMed] [Google Scholar]
  6. Crawford L. V., Pim D. C., Lamb P. The cellular protein p53 in human tumours. Mol Biol Med. 1984 Aug;2(4):261–272. [PubMed] [Google Scholar]
  7. Delattre O., Olschwang S., Law D. J., Melot T., Remvikos Y., Salmon R. J., Sastre X., Validire P., Feinberg A. P., Thomas G. Multiple genetic alterations in distal and proximal colorectal cancer. Lancet. 1989 Aug 12;2(8659):353–356. doi: 10.1016/s0140-6736(89)90537-0. [DOI] [PubMed] [Google Scholar]
  8. Fearon E. R., Hamilton S. R., Vogelstein B. Clonal analysis of human colorectal tumors. Science. 1987 Oct 9;238(4824):193–197. doi: 10.1126/science.2889267. [DOI] [PubMed] [Google Scholar]
  9. Fearon E. R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990 Jun 1;61(5):759–767. doi: 10.1016/0092-8674(90)90186-i. [DOI] [PubMed] [Google Scholar]
  10. Gannon J. V., Greaves R., Iggo R., Lane D. P. Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J. 1990 May;9(5):1595–1602. doi: 10.1002/j.1460-2075.1990.tb08279.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hammel P. R., Beuvon F. X., Salmon R. J., Remvikos Y. Mise en évidence immunochimique de l'expression d'une protéine p53 mutée dans les adénocarcinomes colorectaux humains. Gastroenterol Clin Biol. 1991;15(6-7):529–535. [PubMed] [Google Scholar]
  12. Hollstein M., Sidransky D., Vogelstein B., Harris C. C. p53 mutations in human cancers. Science. 1991 Jul 5;253(5015):49–53. doi: 10.1126/science.1905840. [DOI] [PubMed] [Google Scholar]
  13. Iggo R., Gatter K., Bartek J., Lane D., Harris A. L. Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet. 1990 Mar 24;335(8691):675–679. doi: 10.1016/0140-6736(90)90801-b. [DOI] [PubMed] [Google Scholar]
  14. Jones D. J., Moore M., Schofield P. F. Refining the prognostic significance of DNA ploidy status in colorectal cancer: a prospective flow cytometric study. Int J Cancer. 1988 Feb 15;41(2):206–210. doi: 10.1002/ijc.2910410208. [DOI] [PubMed] [Google Scholar]
  15. Kern S. E., Fearon E. R., Tersmette K. W., Enterline J. P., Leppert M., Nakamura Y., White R., Vogelstein B., Hamilton S. R. Clinical and pathological associations with allelic loss in colorectal carcinoma [corrected]. JAMA. 1989 Jun 2;261(21):3099–3103. doi: 10.1001/jama.261.21.3099. [DOI] [PubMed] [Google Scholar]
  16. Kokal W., Sheibani K., Terz J., Harada J. R. Tumor DNA content in the prognosis of colorectal carcinoma. JAMA. 1986 Jun 13;255(22):3123–3127. [PubMed] [Google Scholar]
  17. Law D. J., Olschwang S., Monpezat J. P., Lefrançois D., Jagelman D., Petrelli N. J., Thomas G., Feinberg A. P. Concerted nonsyntenic allelic loss in human colorectal carcinoma. Science. 1988 Aug 19;241(4868):961–965. doi: 10.1126/science.2841761. [DOI] [PubMed] [Google Scholar]
  18. Lehman T. A., Bennett W. P., Metcalf R. A., Welsh J. A., Ecker J., Modali R. V., Ullrich S., Romano J. W., Appella E., Testa J. R. p53 mutations, ras mutations, and p53-heat shock 70 protein complexes in human lung carcinoma cell lines. Cancer Res. 1991 Aug 1;51(15):4090–4096. [PubMed] [Google Scholar]
  19. Levine A. J., Momand J., Finlay C. A. The p53 tumour suppressor gene. Nature. 1991 Jun 6;351(6326):453–456. doi: 10.1038/351453a0. [DOI] [PubMed] [Google Scholar]
  20. Matlashewski G., Banks L., Pim D., Crawford L. Analysis of human p53 proteins and mRNA levels in normal and transformed cells. Eur J Biochem. 1986 Feb 3;154(3):665–672. doi: 10.1111/j.1432-1033.1986.tb09449.x. [DOI] [PubMed] [Google Scholar]
  21. Muleris M., Salmon R. J., Dutrillaux A. M., Vielh P., Zafrani B., Girodet J., Dutrillaux B. Characteristic chromosomal imbalances in 18 near-diploid colorectal tumors. Cancer Genet Cytogenet. 1987 Dec;29(2):289–301. doi: 10.1016/0165-4608(87)90239-1. [DOI] [PubMed] [Google Scholar]
  22. Muleris M., Salmon R. J., Zafrani B., Girodet J., Dutrillaux B. Consistent deficiencies of chromosome 18 and of the short arm of chromosome 17 in eleven cases of human large bowel cancer: a possible recessive determinism. Ann Genet. 1985;28(4):206–213. [PubMed] [Google Scholar]
  23. Nigro J. M., Baker S. J., Preisinger A. C., Jessup J. M., Hostetter R., Cleary K., Bigner S. H., Davidson N., Baylin S., Devilee P. Mutations in the p53 gene occur in diverse human tumour types. Nature. 1989 Dec 7;342(6250):705–708. doi: 10.1038/342705a0. [DOI] [PubMed] [Google Scholar]
  24. Purdie C. A., O'Grady J., Piris J., Wyllie A. H., Bird C. C. p53 expression in colorectal tumors. Am J Pathol. 1991 Apr;138(4):807–813. [PMC free article] [PubMed] [Google Scholar]
  25. Remvikos Y., Laurent-Puig P., Salmon R. J., Frelat G., Dutrillaux B., Thomas G. Simultaneous monitoring of P53 protein and DNA content of colorectal adenocarcinomas by flow cytometry. Int J Cancer. 1990 Mar 15;45(3):450–456. doi: 10.1002/ijc.2910450313. [DOI] [PubMed] [Google Scholar]
  26. Remvikos Y., Muleris M., Vielh P., Salmon R. J., Dutrillaux B. DNA content and genetic evolution of human colorectal adenocarcinoma. A study by flow cytometry and cytogenetic analysis. Int J Cancer. 1988 Oct 15;42(4):539–543. doi: 10.1002/ijc.2910420411. [DOI] [PubMed] [Google Scholar]
  27. Rodrigues N. R., Rowan A., Smith M. E., Kerr I. B., Bodmer W. F., Gannon J. V., Lane D. P. p53 mutations in colorectal cancer. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7555–7559. doi: 10.1073/pnas.87.19.7555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Scott N., Sagar P., Stewart J., Blair G. E., Dixon M. F., Quirke P. p53 in colorectal cancer: clinicopathological correlation and prognostic significance. Br J Cancer. 1991 Feb;63(2):317–319. doi: 10.1038/bjc.1991.74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stretch J. R., Gatter K. C., Ralfkiaer E., Lane D. P., Harris A. L. Expression of mutant p53 in melanoma. Cancer Res. 1991 Nov 1;51(21):5976–5979. [PubMed] [Google Scholar]
  30. Vogelstein B., Fearon E. R., Kern S. E., Hamilton S. R., Preisinger A. C., Nakamura Y., White R. Allelotype of colorectal carcinomas. Science. 1989 Apr 14;244(4901):207–211. doi: 10.1126/science.2565047. [DOI] [PubMed] [Google Scholar]
  31. Wolf D., Rotter V. Major deletions in the gene encoding the p53 tumor antigen cause lack of p53 expression in HL-60 cells. Proc Natl Acad Sci U S A. 1985 Feb;82(3):790–794. doi: 10.1073/pnas.82.3.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. van den Berg F. M., Tigges A. J., Schipper M. E., den Hartog-Jager F. C., Kroes W. G., Walboomers J. M. Expression of the nuclear oncogene p53 in colon tumours. J Pathol. 1989 Mar;157(3):193–199. doi: 10.1002/path.1711570304. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES