Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1991 Nov;64(5):926–932. doi: 10.1038/bjc.1991.428

Relationship between cathepsin D, urokinase, and plasminogen activator inhibitors in malignant vs benign breast tumours.

D Foucré 1, C Bouchet 1, K Hacène 1, N Pourreau-Schneider 1, A Gentile 1, P M Martin 1, A Desplaces 1, J Oglobine 1
PMCID: PMC1977447  PMID: 1931618

Abstract

The concentrations of cathepsin D (Cath D), urokinase (uPA) and two plasminogen activator inhibitors (PAI-1 and PAI-2) were analysed in the cytosols of 130 human mammary tumours (43 benign tumours and 87 primary and unilateral breast carcinomas). uPA, PAI-1 and PAI-2 levels were measured by antigenic immunoassays and Cath D by immunoradiometric assay. The median levels of the four parameters were significantly higher in the malignant tumours than in the benign ones. Cath D and uPA increases were 4-fold and 5-fold respectively. PAI-1 and PAI-2 increases were much more important, 74-fold and 29-fold respectively. In malignant tumours, median levels of Cath D and uPA did not vary according to classical prognostic factors (histologic grade, presence or absence of axillary lymph nodes, steroid receptors, UICC stage, tumour size, age, and menopausal status). However, PAI-1 decreased in ER+ and PR+ tumours and PAI-2 increased in menopausal women's tumours. When Cath D, uPA, PAI-1 and PAI-2 levels in malignant tumours were compared, positive correlations were found for all combinations. The implication of plasminogen activator inhibitors in the phenomenon was surprising and merits further investigation using tools other than global antigen measurements in tumours.

Full text

PDF
926

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abecassis J., Collard R., Eber M., Pusel J., Fricker J. P., Methlin G. Proteinases and sialyltransferase in human breast tumors. Int J Cancer. 1984 Jun 15;33(6):821–824. doi: 10.1002/ijc.2910330617. [DOI] [PubMed] [Google Scholar]
  2. Andreasen P. A., Georg B., Lund L. R., Riccio A., Stacey S. N. Plasminogen activator inhibitors: hormonally regulated serpins. Mol Cell Endocrinol. 1990 Jan 2;68(1):1–19. doi: 10.1016/0303-7207(90)90164-4. [DOI] [PubMed] [Google Scholar]
  3. Axelrod J. H., Reich R., Miskin R. Expression of human recombinant plasminogen activators enhances invasion and experimental metastasis of H-ras-transformed NIH 3T3 cells. Mol Cell Biol. 1989 May;9(5):2133–2141. doi: 10.1128/mcb.9.5.2133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker M. S., Bleakley P., Woodrow G. C., Doe W. F. Inhibition of cancer cell urokinase plasminogen activator by its specific inhibitor PAI-2 and subsequent effects on extracellular matrix degradation. Cancer Res. 1990 Aug 1;50(15):4676–4684. [PubMed] [Google Scholar]
  5. Benjamin L. A., McGarry R. C., Hart D. A. Effect of retinoic acid on human neuroblastoma: correlation between morphological differentiation and changes in plasminogen activator and inhibitor activity. Cancer Chemother Pharmacol. 1989;25(1):25–31. doi: 10.1007/BF00694334. [DOI] [PubMed] [Google Scholar]
  6. Bergman B. L., Scott R. W., Bajpai A., Watts S., Baker J. B. Inhibition of tumor-cell-mediated extracellular matrix destruction by a fibroblast proteinase inhibitor, protease nexin I. Proc Natl Acad Sci U S A. 1986 Feb;83(4):996–1000. doi: 10.1073/pnas.83.4.996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bernik M. B., Wijngaards G., Rijken D. C. Production by human tissues in culture of immunologically distinct, multiple molecular weight forms of plasminogen activators. Ann N Y Acad Sci. 1981;370:592–608. doi: 10.1111/j.1749-6632.1981.tb29766.x. [DOI] [PubMed] [Google Scholar]
  8. Boyd D., Ziober B., Chakrabarty S., Brattain M. Examination of urokinase protein/transcript levels and their relationship with laminin degradation in cultured colon carcinoma. Cancer Res. 1989 Feb 15;49(4):816–820. [PubMed] [Google Scholar]
  9. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  10. Briozzo P., Morisset M., Capony F., Rougeot C., Rochefort H. In vitro degradation of extracellular matrix with Mr 52,000 cathepsin D secreted by breast cancer cells. Cancer Res. 1988 Jul 1;48(13):3688–3692. [PubMed] [Google Scholar]
  11. Brouillet J. P., Theillet C., Maudelonde T., Defrenne A., Simony-Lafontaine J., Sertour J., Pujol H., Jeanteur P., Rochefort H. Cathepsin D assay in primary breast cancer and lymph nodes: relationship with c-myc, c-erb-B-2 and int-2 oncogene amplification and node invasiveness. Eur J Cancer. 1990 Apr;26(4):437–441. doi: 10.1016/0277-5379(90)90012-i. [DOI] [PubMed] [Google Scholar]
  12. Cajot J. F., Bamat J., Bergonzelli G. E., Kruithof E. K., Medcalf R. L., Testuz J., Sordat B. Plasminogen-activator inhibitor type 1 is a potent natural inhibitor of extracellular matrix degradation by fibrosarcoma and colon carcinoma cells. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6939–6943. doi: 10.1073/pnas.87.18.6939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cajot J. F., Kruithof E. K., Schleuning W. D., Sordat B., Bachmann F. Plasminogen activators, plasminogen activator inhibitors and procoagulant analyzed in twenty human tumor cell lines. Int J Cancer. 1986 Nov 15;38(5):719–727. doi: 10.1002/ijc.2910380516. [DOI] [PubMed] [Google Scholar]
  14. Cajot J. F., Schleuning W. D., Medcalf R. L., Bamat J., Testuz J., Liebermann L., Sordat B. Mouse L cells expressing human prourokinase-type plasminogen activator: effects on extracellular matrix degradation and invasion. J Cell Biol. 1989 Aug;109(2):915–925. doi: 10.1083/jcb.109.2.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Capony F., Rougeot C., Montcourrier P., Cavailles V., Salazar G., Rochefort H. Increased secretion, altered processing, and glycosylation of pro-cathepsin D in human mammary cancer cells. Cancer Res. 1989 Jul 15;49(14):3904–3909. [PubMed] [Google Scholar]
  16. Chapman H. A., Jr, Vavrin Z., Hibbs J. B., Jr Macrophage fibrinolytic activity: identification of two pathways of plasmin formation by intact cells and of a plasminogen activator inhibitor. Cell. 1982 Mar;28(3):653–662. doi: 10.1016/0092-8674(82)90220-3. [DOI] [PubMed] [Google Scholar]
  17. Cohen R. L., Niclas J., Lee W. M., Wun T. C., Crowley C. W., Levinson A. D., Sadler J. E., Shuman M. A. Effects of cellular transformation on expression of plasminogen activator inhibitors 1 and 2. Evidence for independent regulation. J Biol Chem. 1989 May 15;264(14):8375–8383. [PubMed] [Google Scholar]
  18. Costantini V., Zacharski L. R., Memoli V. A., Kudryk B. J., Rousseau S. M., Stump D. C. Occurrence of components of fibrinolysis pathways in situ in neoplastic and nonneoplastic human breast tissue. Cancer Res. 1991 Jan 1;51(1):354–358. [PubMed] [Google Scholar]
  19. Danø K., Andreasen P. A., Grøndahl-Hansen J., Kristensen P., Nielsen L. S., Skriver L. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res. 1985;44:139–266. doi: 10.1016/s0065-230x(08)60028-7. [DOI] [PubMed] [Google Scholar]
  20. Duffy M. J., Brouillet J. P., Reilly D., McDermott E., O'Higgins N., Fennelly J. J., Maudelonde T., Rochefort H. Cathepsin D concentration in breast cancer cytosols: correlation with biochemical, histological, and clinical findings. Clin Chem. 1991 Jan;37(1):101–104. [PubMed] [Google Scholar]
  21. Duffy M. J., O'Grady P., Simon J., Rose M., Lijnen H. R. Tissue-type plasminogen activator in breast cancer: relationship with estradiol and progesterone receptors. J Natl Cancer Inst. 1986 Sep;77(3):621–623. doi: 10.1093/jnci/77.3.621. [DOI] [PubMed] [Google Scholar]
  22. Evers J. L., Patel J., Madeja J. M., Schneider S. L., Hobika G. H., Camiolo S. M., Markus G. Plasminogen activator activity and composition in human breast cancer. Cancer Res. 1982 Jan;42(1):219–226. [PubMed] [Google Scholar]
  23. Freiss G., Vignon F., Rochefort H. Characterization and properties of two monoclonal antibodies specific for the Mr 52,000 precursor of cathepsin D in human breast cancer cells. Cancer Res. 1988 Jul 1;48(13):3709–3715. [PubMed] [Google Scholar]
  24. Garcia M., Lacombe M. J., Duplay H., Cavailles V., Derocq D., Delarue J. C., Krebs B., Contesso G., Sancho-Garnier H., Richer G. Immunohistochemical distribution of the 52-kDa protein in mammary tumors: a marker associated with cell proliferation rather than with hormone responsiveness. J Steroid Biochem. 1987;27(1-3):439–445. doi: 10.1016/0022-4731(87)90338-4. [DOI] [PubMed] [Google Scholar]
  25. Garcia M., Salazar-Retana G., Pages A., Richer G., Domergue J., Pages A. M., Cavalie G., Martin J. M., Lamarque J. L., Pau B. Distribution of the Mr 52,000 estrogen-regulated protein in benign breast diseases and other tissues by immunohistochemistry. Cancer Res. 1986 Jul;46(7):3734–3738. [PubMed] [Google Scholar]
  26. Garcia M., Salazar-Retana G., Richer G., Domergue J., Capony F., Pujol H., Laffargue F., Pau B., Rochefort H. Immunohistochemical detection of the estrogen-regulated 52,000 mol wt protein in primary breast cancers but not in normal breast and uterus. J Clin Endocrinol Metab. 1984 Sep;59(3):564–566. doi: 10.1210/jcem-59-3-564. [DOI] [PubMed] [Google Scholar]
  27. Gloor S., Odink K., Guenther J., Nick H., Monard D. A glia-derived neurite promoting factor with protease inhibitory activity belongs to the protease nexins. Cell. 1986 Dec 5;47(5):687–693. doi: 10.1016/0092-8674(86)90511-8. [DOI] [PubMed] [Google Scholar]
  28. Gold L. I., Schwimmer R., Quigley J. P. Human plasma fibronectin as a substrate for human urokinase. Biochem J. 1989 Sep 1;262(2):529–534. doi: 10.1042/bj2620529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hart D. A., Rehemtulla A. Plasminogen activators and their inhibitors: regulators of extracellular proteolysis and cell function. Comp Biochem Physiol B. 1988;90(4):691–708. doi: 10.1016/0305-0491(88)90323-9. [DOI] [PubMed] [Google Scholar]
  30. Hearing V. J., Law L. W., Corti A., Appella E., Blasi F. Modulation of metastatic potential by cell surface urokinase of murine melanoma cells. Cancer Res. 1988 Mar 1;48(5):1270–1278. [PubMed] [Google Scholar]
  31. Heidtmann H. H., Hofmann M., Jacob E., Erbil C., Havemann K., Schwartz-Albiez R. Synthesis and secretion of plasminogen activators and plasminogen activator inhibitors in cell lines of different groups of human lung tumors. Cancer Res. 1989 Dec 15;49(24 Pt 1):6960–6965. [PubMed] [Google Scholar]
  32. Jaffe E. A. Cell biology of endothelial cells. Hum Pathol. 1987 Mar;18(3):234–239. doi: 10.1016/s0046-8177(87)80005-9. [DOI] [PubMed] [Google Scholar]
  33. Keski-Oja J., Raghow R., Sawdey M., Loskutoff D. J., Postlethwaite A. E., Kang A. H., Moses H. L. Regulation of mRNAs for type-1 plasminogen activator inhibitor, fibronectin, and type I procollagen by transforming growth factor-beta. Divergent responses in lung fibroblasts and carcinoma cells. J Biol Chem. 1988 Mar 5;263(7):3111–3115. [PubMed] [Google Scholar]
  34. Kruithof E. K., Tran-Thang C., Gudinchet A., Hauert J., Nicoloso G., Genton C., Welti H., Bachmann F. Fibrinolysis in pregnancy: a study of plasminogen activator inhibitors. Blood. 1987 Feb;69(2):460–466. [PubMed] [Google Scholar]
  35. Liotta L. A., Goldfarb R. H., Brundage R., Siegal G. P., Terranova V., Garbisa S. Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane. Cancer Res. 1981 Nov;41(11 Pt 1):4629–4636. [PubMed] [Google Scholar]
  36. Liotta L. A., Thorgeirsson U. P., Garbisa S. Role of collagenases in tumor cell invasion. Cancer Metastasis Rev. 1982;1(4):277–288. doi: 10.1007/BF00124213. [DOI] [PubMed] [Google Scholar]
  37. Maguchi S., Taniguchi N., Makita A. Elevated activity and increased mannose-6-phosphate in the carbohydrate moiety of cathepsin D from human hepatoma. Cancer Res. 1988 Jan 15;48(2):362–367. [PubMed] [Google Scholar]
  38. Markus G. The relevance of plasminogen activators to neoplastic growth. A review of recent literature. Enzyme. 1988;40(2-3):158–172. doi: 10.1159/000469158. [DOI] [PubMed] [Google Scholar]
  39. Maudelonde T., Khalaf S., Garcia M., Freiss G., Duporte J., Benatia M., Rogier H., Paolucci F., Simony J., Pujol H. Immunoenzymatic assay of Mr 52,000 cathepsin D in 182 breast cancer cytosols: low correlation with other prognostic parameters. Cancer Res. 1988 Jan 15;48(2):462–466. [PubMed] [Google Scholar]
  40. McDonnell S., Matrisian L. M. Stromelysin in tumor progression and metastasis. Cancer Metastasis Rev. 1990 Dec;9(4):305–319. doi: 10.1007/BF00049521. [DOI] [PubMed] [Google Scholar]
  41. McKeehan W. L., Sakagami Y., Hoshi H., McKeehan K. A. Two apparent human endothelial cell growth factors from human hepatoma cells are tumor-associated proteinase inhibitors. J Biol Chem. 1986 Apr 25;261(12):5378–5383. [PubMed] [Google Scholar]
  42. Meissauer A., Kramer M. D., Hofmann M., Erkell L. J., Jacob E., Schirrmacher V., Brunner G. Urokinase-type and tissue-type plasminogen activators are essential for in vitro invasion of human melanoma cells. Exp Cell Res. 1991 Feb;192(2):453–459. doi: 10.1016/0014-4827(91)90064-2. [DOI] [PubMed] [Google Scholar]
  43. Mignatti P., Robbins E., Rifkin D. B. Tumor invasion through the human amniotic membrane: requirement for a proteinase cascade. Cell. 1986 Nov 21;47(4):487–498. doi: 10.1016/0092-8674(86)90613-6. [DOI] [PubMed] [Google Scholar]
  44. Mira-y-Lopez R., Osborne M. P., DePalo A. J., Ossowski L. Estradiol modulation of plasminogen activator production in organ cultures of human breast carcinomas: correlation with clinical outcome of anti-estrogen therapy. Int J Cancer. 1991 Apr 1;47(6):827–832. doi: 10.1002/ijc.2910470606. [DOI] [PubMed] [Google Scholar]
  45. Moscatelli D., Rifkin D. B. Membrane and matrix localization of proteinases: a common theme in tumor cell invasion and angiogenesis. Biochim Biophys Acta. 1988 Aug 3;948(1):67–85. doi: 10.1016/0304-419x(88)90005-4. [DOI] [PubMed] [Google Scholar]
  46. Mullins D. E., Rohrlich S. T. The role of proteinases in cellular invasiveness. Biochim Biophys Acta. 1983 Dec 29;695(3-4):177–214. doi: 10.1016/0304-419x(83)90011-2. [DOI] [PubMed] [Google Scholar]
  47. Naito S., Kinjo M., Nanno S., Kohga S., Oka K., Tanaka K. Fibrinolysis-inhibitory activity of cultured human cancer cell lines. Gan. 1981 Feb;72(1):1–7. [PubMed] [Google Scholar]
  48. Needham G. K., Nicholson S., Angus B., Farndon J. R., Harris A. L. Relationship of membrane-bound tissue type and urokinase type plasminogen activators in human breast cancers to estrogen and epidermal growth factor receptors. Cancer Res. 1988 Nov 15;48(22):6603–6607. [PubMed] [Google Scholar]
  49. O'Grady P., Lijnen H. R., Duffy M. J. Multiple forms of plasminogen activator in human breast tumors. Cancer Res. 1985 Dec;45(12 Pt 1):6216–6218. [PubMed] [Google Scholar]
  50. O'Grady R. L., Upfold L. I., Stephens R. W. Rat mammary carcinoma cells secrete active collagenase and activate latent enzyme in the stroma via plasminogen activator. Int J Cancer. 1981 Oct 15;28(4):509–515. doi: 10.1002/ijc.2910280418. [DOI] [PubMed] [Google Scholar]
  51. Ossowski L. In vivo invasion of modified chorioallantoic membrane by tumor cells: the role of cell surface-bound urokinase. J Cell Biol. 1988 Dec;107(6 Pt 1):2437–2445. doi: 10.1083/jcb.107.6.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Ossowski L. Plasminogen activator dependent pathways in the dissemination of human tumor cells in the chick embryo. Cell. 1988 Feb 12;52(3):321–328. doi: 10.1016/s0092-8674(88)80025-4. [DOI] [PubMed] [Google Scholar]
  53. Ossowski L., Reich E. Antibodies to plasminogen activator inhibit human tumor metastasis. Cell. 1983 Dec;35(3 Pt 2):611–619. doi: 10.1016/0092-8674(83)90093-4. [DOI] [PubMed] [Google Scholar]
  54. Paranjpe M., Engel L., Young N., Liotta L. A. Activation of human breast carcinoma collagenase through plasminogen activator. Life Sci. 1980 Apr 14;26(15):1223–1231. doi: 10.1016/0024-3205(80)90067-3. [DOI] [PubMed] [Google Scholar]
  55. Quax P. H., van Leeuwen R. T., Verspaget H. W., Verheijen J. H. Protein and messenger RNA levels of plasminogen activators and inhibitors analyzed in 22 human tumor cell lines. Cancer Res. 1990 Mar 1;50(5):1488–1494. [PubMed] [Google Scholar]
  56. Reich R., Thompson E. W., Iwamoto Y., Martin G. R., Deason J. R., Fuller G. C., Miskin R. Effects of inhibitors of plasminogen activator, serine proteinases, and collagenase IV on the invasion of basement membranes by metastatic cells. Cancer Res. 1988 Jun 15;48(12):3307–3312. [PubMed] [Google Scholar]
  57. Rochefort H., Capony F., Garcia M. Cathepsin D: a protease involved in breast cancer metastasis. Cancer Metastasis Rev. 1990 Dec;9(4):321–331. doi: 10.1007/BF00049522. [DOI] [PubMed] [Google Scholar]
  58. Rochefort H., Cavailles V., Augereau P., Capony F., Maudelonde T., Touitou I., Garcia M. Overexpression and hormonal regulation of pro-cathepsin D in mammary and endometrial cancer. J Steroid Biochem. 1989;34(1-6):177–182. doi: 10.1016/0022-4731(89)90080-0. [DOI] [PubMed] [Google Scholar]
  59. Romain S., Muracciole X., Varette I., Bressac C., Brandone H., Martin P. M. La cathepsine-D: un facteur pronostique indépendant dans le cancer du sein. Bull Cancer. 1990;77(5):439–447. [PubMed] [Google Scholar]
  60. Saito K., Nagashima M., Iwata M., Hamada H., Sumiyoshi K., Takada Y., Takada A. The concentration of tissue plasminogen activator and urokinase in plasma and tissues of patients with ovarian and uterine tumors. Thromb Res. 1990 May 15;58(4):355–366. doi: 10.1016/0049-3848(90)90207-s. [DOI] [PubMed] [Google Scholar]
  61. Sappino A. P., Busso N., Belin D., Vassalli J. D. Increase of urokinase-type plasminogen activator gene expression in human lung and breast carcinomas. Cancer Res. 1987 Aug 1;47(15):4043–4046. [PubMed] [Google Scholar]
  62. Schlechte W., Murano G., Boyd D. Examination of the role of the urokinase receptor in human colon cancer mediated laminin degradation. Cancer Res. 1989 Nov 1;49(21):6064–6069. [PubMed] [Google Scholar]
  63. Schleef R. R., Wagner N. V., Loskutoff D. J. Detection of both type 1 and type 2 plasminogen activator inhibitors in human cells. J Cell Physiol. 1988 Feb;134(2):269–274. doi: 10.1002/jcp.1041340213. [DOI] [PubMed] [Google Scholar]
  64. Sloane B. F., Moin K., Krepela E., Rozhin J. Cathepsin B and its endogenous inhibitors: the role in tumor malignancy. Cancer Metastasis Rev. 1990 Dec;9(4):333–352. doi: 10.1007/BF00049523. [DOI] [PubMed] [Google Scholar]
  65. Spyratos F., Maudelonde T., Brouillet J. P., Brunet M., Defrenne A., Andrieu C., Hacene K., Desplaces A., Rouëssé J., Rochefort H. Cathepsin D: an independent prognostic factor for metastasis of breast cancer. Lancet. 1989 Nov 11;2(8672):1115–1118. doi: 10.1016/s0140-6736(89)91487-6. [DOI] [PubMed] [Google Scholar]
  66. Stetler-Stevenson W. G. Type IV collagenases in tumor invasion and metastasis. Cancer Metastasis Rev. 1990 Dec;9(4):289–303. doi: 10.1007/BF00049520. [DOI] [PubMed] [Google Scholar]
  67. Tandon A. K., Clark G. M., Chamness G. C., Chirgwin J. M., McGuire W. L. Cathepsin D and prognosis in breast cancer. N Engl J Med. 1990 Feb 1;322(5):297–302. doi: 10.1056/NEJM199002013220504. [DOI] [PubMed] [Google Scholar]
  68. Testa J. E., Quigley J. P. The role of urokinase-type plasminogen activator in aggressive tumor cell behavior. Cancer Metastasis Rev. 1990 Dec;9(4):353–367. doi: 10.1007/BF00049524. [DOI] [PubMed] [Google Scholar]
  69. Thorpe S. M., Rochefort H., Garcia M., Freiss G., Christensen I. J., Khalaf S., Paolucci F., Pau B., Rasmussen B. B., Rose C. Association between high concentrations of Mr 52,000 cathepsin D and poor prognosis in primary human breast cancer. Cancer Res. 1989 Nov 1;49(21):6008–6014. [PubMed] [Google Scholar]
  70. Tissot J. D., Hauert J., Bachmann F. Characterization of plasminogen activators from normal human breast and colon and from breast and colon carcinomas. Int J Cancer. 1984 Sep 15;34(3):295–302. doi: 10.1002/ijc.2910340302. [DOI] [PubMed] [Google Scholar]
  71. Tryggvason K., Höyhtyä M., Salo T. Proteolytic degradation of extracellular matrix in tumor invasion. Biochim Biophys Acta. 1987 Nov 25;907(3):191–217. doi: 10.1016/0304-419x(87)90006-0. [DOI] [PubMed] [Google Scholar]
  72. Tsuboi R., Rifkin D. B. Bimodal relationship between invasion of the amniotic membrane and plasminogen activator activity. Int J Cancer. 1990 Jul 15;46(1):56–60. doi: 10.1002/ijc.2910460112. [DOI] [PubMed] [Google Scholar]
  73. Wilson E. L., Francis G. E. Differentiation-linked secretion of urokinase and tissue plasminogen activator by normal human hemopoietic cells. J Exp Med. 1987 Jun 1;165(6):1609–1623. doi: 10.1084/jem.165.6.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Wohlwend A., Belin D., Vassalli J. D. Plasminogen activator-specific inhibitors in mouse macrophages: in vivo and in vitro modulation of their synthesis and secretion. J Immunol. 1987 Aug 15;139(4):1278–1284. [PubMed] [Google Scholar]
  75. Yagel S., Khokha R., Denhardt D. T., Kerbel R. S., Parhar R. S., Lala P. K. Mechanisms of cellular invasiveness: a comparison of amnion invasion in vitro and metastatic behavior in vivo. J Natl Cancer Inst. 1989 May 10;81(10):768–775. doi: 10.1093/jnci/81.10.768. [DOI] [PubMed] [Google Scholar]
  76. Yu H. R., Schultz R. M. Relationship between secreted urokinase plasminogen activator activity and metastatic potential in murine B16 cells transfected with human urokinase sense and antisense genes. Cancer Res. 1990 Dec 1;50(23):7623–7633. [PubMed] [Google Scholar]
  77. Zucker S., Lysik R. M., Ramamurthy N. S., Golub L. M., Wieman J. M., Wilkie D. P. Diversity of melanoma plasma membrane proteinases: inhibition of collagenolytic and cytolytic activities by minocycline. J Natl Cancer Inst. 1985 Sep;75(3):517–525. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES