Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1992 Jul;66(1):119–127. doi: 10.1038/bjc.1992.227

Cardiotoxicity of commercial 5-fluorouracil vials stems from the alkaline hydrolysis of this drug.

L Lemaire 1, M C Malet-Martino 1, M de Forni 1, R Martino 1, B Lasserre 1
PMCID: PMC1977901  PMID: 1637660

Abstract

The cardiotoxicity of 5-fluorouracil (FU) was attributed to impurities present in the injected vials. One of these impurities was identified as fluoroacetaldehyde which is metabolised by isolated perfused rabbit hearts into fluoroacetate (FAC), a highly cardiotoxic compound. FAC was also detected in the urine of patients treated with FU. These impurities were found to be degradation products of FU that are formed in the basic medium employed to dissolve this compound. To avoid chemical degradation of this antineoplastic drug, the solution of FU that will be injected should be prepared immediately before use.

Full text

PDF
119

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borch R. F., Getman K. M. Base-catalyzed hydrolysis of 4-hydroperoxycyclophosphamide: evidence for iminocyclophosphamide as an intermediate. J Med Chem. 1984 Apr;27(4):485–490. doi: 10.1021/jm00370a009. [DOI] [PubMed] [Google Scholar]
  2. Collins C., Weiden P. L. Cardiotoxicity of 5-fluorouracil. Cancer Treat Rep. 1987 Jul-Aug;71(7-8):733–736. [PubMed] [Google Scholar]
  3. Dent R. G., McColl I. Letter: 5-Fluorouracil and angina. Lancet. 1975 Feb 8;1(7902):347–348. doi: 10.1016/s0140-6736(75)91270-2. [DOI] [PubMed] [Google Scholar]
  4. Ensley J. F., Patel B., Kloner R., Kish J. A., Wynne J., al-Sarraf M. The clinical syndrome of 5-fluorouracil cardiotoxicity. Invest New Drugs. 1989 Apr;7(1):101–109. doi: 10.1007/BF00178196. [DOI] [PubMed] [Google Scholar]
  5. Eskilsson J., Albertsson M., Mercke C. Adverse cardiac effects during induction chemotherapy treatment with cis-platin and 5-fluorouracil. Radiother Oncol. 1988 Sep;13(1):41–46. doi: 10.1016/0167-8140(88)90296-4. [DOI] [PubMed] [Google Scholar]
  6. Freeman N. J., Costanza M. E. 5-Fluorouracil-associated cardiotoxicity. Cancer. 1988 Jan 1;61(1):36–45. doi: 10.1002/1097-0142(19880101)61:1<36::aid-cncr2820610108>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
  7. Garrett E. R., Nestler H. J., Somodi A. Kinetics and mechanisms of hydrolysis of 5-halouracils. J Org Chem. 1968 Sep;33(9):3460–3468. doi: 10.1021/jo01273a022. [DOI] [PubMed] [Google Scholar]
  8. Gradishar W. J., Vokes E. E. 5-Fluorouracil cardiotoxicity: a critical review. Ann Oncol. 1990 Nov;1(6):409–414. doi: 10.1093/oxfordjournals.annonc.a057793. [DOI] [PubMed] [Google Scholar]
  9. Heidelberger C., Danenberg P. V., Moran R. G. Fluorinated pyrimidines and their nucleosides. Adv Enzymol Relat Areas Mol Biol. 1983;54:58–119. [PubMed] [Google Scholar]
  10. Hull W. E., Port R. E., Herrmann R., Britsch B., Kunz W. Metabolites of 5-fluorouracil in plasma and urine, as monitored by 19F nuclear magnetic resonance spectroscopy, for patients receiving chemotherapy with or without methotrexate pretreatment. Cancer Res. 1988 Mar 15;48(6):1680–1688. [PubMed] [Google Scholar]
  11. Koenig H., Patel A. Biochemical basis for fluorouracil neurotoxicity. The role of Krebs cycle inhibition by fluoroacetate. Arch Neurol. 1970 Aug;23(2):155–160. doi: 10.1001/archneur.1970.00480260061008. [DOI] [PubMed] [Google Scholar]
  12. Labianca R., Beretta G., Clerici M., Fraschini P., Luporini G. Cardiac toxicity of 5-fluorouracil: a study on 1083 patients. Tumori. 1982 Dec 31;68(6):505–510. doi: 10.1177/030089168206800609. [DOI] [PubMed] [Google Scholar]
  13. MUKHERJEE K. L., HEIDELBERGER C. Studies on fluorinated pyrimidines. IX. The degradation of 5-fluorouracil-6-C14. J Biol Chem. 1960 Feb;235:433–437. [PubMed] [Google Scholar]
  14. Malet-Martino M. C., Armand J. P., Lopez A., Bernadou J., Béteille J. P., Bon M., Martino R. Evidence for the importance of 5'-deoxy-5-fluorouridine catabolism in humans from 19F nuclear magnetic resonance spectrometry. Cancer Res. 1986 Apr;46(4 Pt 2):2105–2112. [PubMed] [Google Scholar]
  15. Malet-Martino M. C., Martino R., Armand J. P. La spectroscopie de résonance magnétique nucléaire du fluor-19: un outil privilégié pour l'étude du métabolisme et de la pharmacocinétique des fluoropyrimidines. Bull Cancer. 1990;77(12):1223–1244. [PubMed] [Google Scholar]
  16. Malet-Martino M. C., Martino R. Uses and limitations of nuclear magnetic resonance (NMR) spectroscopy in clinical pharmacokinetics. Clin Pharmacokinet. 1991 May;20(5):337–349. doi: 10.2165/00003088-199120050-00001. [DOI] [PubMed] [Google Scholar]
  17. Martino R., Malet-Martino M. C., Vialaneix C., Lopez A., Bon M. 19F nuclear magnetic resonance analysis of the carbamate reaction of alpha-fluoro-beta-alanine (FBAL), the major catabolite of fluoropyrimidines. Application to FBAL carbamate determination in body fluids of patients treated with 5'-deoxy-5-fluorouridine. Drug Metab Dispos. 1987 Nov-Dec;15(6):897–904. [PubMed] [Google Scholar]
  18. Matsubara I., Kamiya J., Imai S. Cardiotoxic effects of 5-fluorouracil in the guinea pig. Jpn J Pharmacol. 1980 Dec;30(6):871–879. doi: 10.1254/jjp.30.871. [DOI] [PubMed] [Google Scholar]
  19. Mead R. J., Oliver A. J., King D. R. Metabolism and defluorination of fluoroacetate in the brush-tailed possum (Trichosurus vulpecula). Aust J Biol Sci. 1979 Feb;32(1):15–26. [PubMed] [Google Scholar]
  20. Parisot D., Malet-Martino M. C., Martino R., Crasnier P. F Nuclear Magnetic Resonance Analysis of 5-Fluorouracil Metabolism in Four Differently Pigmented Strains of Nectria haematococca. Appl Environ Microbiol. 1991 Dec;57(12):3605–3612. doi: 10.1128/aem.57.12.3605-3612.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rezkalla S., Kloner R. A., Ensley J., al-Sarraf M., Revels S., Olivenstein A., Bhasin S., Kerpel-Fronious S., Turi Z. G. Continuous ambulatory ECG monitoring during fluorouracil therapy: a prospective study. J Clin Oncol. 1989 Apr;7(4):509–514. doi: 10.1200/JCO.1989.7.4.509. [DOI] [PubMed] [Google Scholar]
  22. Tecle B., Casida J. E. Enzymatic defluorination and metabolism of fluoroacetate, fluoroacetamide, fluoroethanol, and (-)-erythro-fluorocitrate in rats and mice examined by 19F and 13C NMR. Chem Res Toxicol. 1989 Nov-Dec;2(6):429–435. doi: 10.1021/tx00012a012. [DOI] [PubMed] [Google Scholar]
  23. Wain W. H., Staatz W. D. Rates of synthesis of ribosomal protein and total ribonucleic acid through the cell cycle of the fission yeast Schizosaccharomyces pombe. Exp Cell Res. 1973 Oct;81(2):269–278. doi: 10.1016/0014-4827(73)90515-6. [DOI] [PubMed] [Google Scholar]
  24. Zon G., Ludeman S. M., Brandt J. A., Boyd V. L., Ozkan G., Egan W., Shao K. L. NMR spectroscopic studies of intermediary metabolites of cyclophosphamide. A comprehensive kinetic analysis of the interconversion of cis- and trans-4-hydroxycyclophosphamide with aldophosphamide and the concomitant partitioning of aldophosphamide between irreversible fragmentation and reversible conjugation pathways. J Med Chem. 1984 Apr;27(4):466–485. doi: 10.1021/jm00370a008. [DOI] [PubMed] [Google Scholar]
  25. de Forni M., Bugat R., Sorbette F., Delay M., Bachaud J. M., Chevreau C. Cardiotoxicité du 5-fluorouracile perfusion intraveineuse continue: étude clinique, prévention, physiopathologie. A propos d'une série de 13 cas. Bull Cancer. 1990;77(5):429–438. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES