Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1984 Feb;81(2):317–326. doi: 10.1111/j.1476-5381.1984.tb10081.x

Contractions of rat uterine smooth muscle induced by acetylcholine and angiotensin II in Ca2+-free medium.

C Lalanne, C Mironneau, J Mironneau, J P Savineau
PMCID: PMC1986878  PMID: 6704592

Abstract

The effects of acetylcholine (ACh, 10(-4)M) and angiotensin II (Ang II, 10(-6) M) have been studied on the mechanical and electrical activities of rat myometrial strips perfused in Ca2+-free EGTA-containing solutions. Both ACh and Ang II produced transient contractions, the amplitude of which can be taken as a measurement of the amount of Ca2+ present in a drug-sensitive Ca2+ store. The degree of filling of this store depended on the external Ca2+ concentration, and on the presence of contractile responses during the Ca2+ loading period. The existence of two pathways (either direct or transcytoplasmic) is suggested for Ca2+ uptake into the internal Ca2+ store. The rate of filling of the Ca2+ store in 2.1 mM-Ca2+-containing solution was faster (time to half-maximal response, t 1/2 = 29 +/- 2.2 s, n = 4) than the rate of depletion in Ca2+-free solution (t 1/2 = 3 +/- 0.3 min, n = 3). The gradual depletion of this store was much slower at 18 degrees C than at 35 degrees C, and in the presence of vanadate which is known to inhibit Ca2+-ATPases. Methoxyverapamil (D600, 10(-6)-10(-5) M) had no appreciable effect on the direct Ca2+ uptake or on the release of Ca2+ from the store by ACh and Ang II. Mn2+ (10(-3) M) completely inhibited the direct pathway to the internal Ca2+ store and also reduced the release of Ca2+. ACh and Ang II induced repetitive depolarizations close to zero potential which did not parallel the transient contractions as a function of the time of perfusion in Ca2+-free solution. Applications of 2 mM EGTA, 135 mM K+ or Ca2+ antagonists which suppressed or reduced the drug-induced depolarizations did not affect appreciably the drug-induced contractions. These results suggest that myometrial cells have an intracellular Ca2+ store sensitive to different stimulus substances. This store is not affected by depolarization of the plasma membrane and is certainly different from that described in voltage-clamp experiments.

Full text

PDF
317

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolton T. B., Clark J. P., Kitamura K., Lang R. J. Evidence that histamine and carbachol may open the same ion channels in longitudinal smooth muscle of guinea-pig ileum. J Physiol. 1981 Nov;320:363–379. doi: 10.1113/jphysiol.1981.sp013955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bolton T. B., Kitamura K. Evidence that ionic channels associated with the muscarinic receptor of smooth muscle may admit calcium. Br J Pharmacol. 1983 Feb;78(2):405–416. doi: 10.1111/j.1476-5381.1983.tb09405.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bolton T. B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev. 1979 Jul;59(3):606–718. doi: 10.1152/physrev.1979.59.3.606. [DOI] [PubMed] [Google Scholar]
  4. Brading A. F., Burnett M., Sneddon P. The effect of sodium removal on the contractile response of the guinea-pig taenia coli to carbachol. J Physiol. 1980 Sep;306:411–429. doi: 10.1113/jphysiol.1980.sp013404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brading A. F., Sneddon P. Evidence for multiple sources of calcium for activation of the contractile mechanism of guinea-pig taenia coli on stimulation with carbachol. Br J Pharmacol. 1980 Oct;70(2):229–240. doi: 10.1111/j.1476-5381.1980.tb07928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bülbring E., den Hertog A. The action of isoprenaline on the smooth muscle of the guinea-pig taenia coli. J Physiol. 1980 Jul;304:277–296. doi: 10.1113/jphysiol.1980.sp013324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Casteels R., Droogmans G. Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells or rabbit ear artery. J Physiol. 1981 Aug;317:263–279. doi: 10.1113/jphysiol.1981.sp013824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Casteels R., Raeymaekers L. The action of acetylcholine and catecholamines on an intracellular calcium store in the smooth muscle cells of the guinea-pig taenia coli. J Physiol. 1979 Sep;294:51–68. doi: 10.1113/jphysiol.1979.sp012914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Deth R., van Breemen C. Agonist induced release of intracellular Ca2+ in the rabbit aorta. J Membr Biol. 1977 Jan 28;30(4):363–380. doi: 10.1007/BF01869677. [DOI] [PubMed] [Google Scholar]
  10. Devine C. E., Somlyo A. V., Somlyo A. P. Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles. J Cell Biol. 1972 Mar;52(3):690–718. doi: 10.1083/jcb.52.3.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DiPolo R., Rojas H. R., Beaugé L. Vanadate inhibits uncoupled Ca efflux but not Na--Ca exchange in squid axons. Nature. 1979 Sep 20;281(5728):229–230. doi: 10.1038/281228a0. [DOI] [PubMed] [Google Scholar]
  12. Droogmans G., Casteels R. Temperature-dependence of 45Ca fluxes and contraction in vascular smooth muscle cells of rabbit ear artery. Pflugers Arch. 1981 Sep;391(3):183–189. doi: 10.1007/BF00596168. [DOI] [PubMed] [Google Scholar]
  13. Droogmans G., Raeymaekers L., Casteels R. Electro- and pharmacomechanical coupling in the smooth muscle cells of the rabbit ear artery. J Gen Physiol. 1977 Aug;70(2):129–148. doi: 10.1085/jgp.70.2.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. EDMAN K. A., SCHILD H. O. The need for calcium in the contractile responses induced by acetylcholine and potassium in the rat uterus. J Physiol. 1962 May;161:424–441. doi: 10.1113/jphysiol.1962.sp006897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ebashi S., Endo M. Calcium ion and muscle contraction. Prog Biophys Mol Biol. 1968;18:123–183. doi: 10.1016/0079-6107(68)90023-0. [DOI] [PubMed] [Google Scholar]
  16. FILO R. S., BOHR D. F., RUEGG J. C. GLYCERINATED SKELETAL AND SMOOTH MUSCLE: CALCIUM AND MAGNESIUM DEPENDENCE. Science. 1965 Mar 26;147(3665):1581–1583. doi: 10.1126/science.147.3665.1581. [DOI] [PubMed] [Google Scholar]
  17. Fleckenstein A. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Annu Rev Pharmacol Toxicol. 1977;17:149–166. doi: 10.1146/annurev.pa.17.040177.001053. [DOI] [PubMed] [Google Scholar]
  18. Grover A. K., Jones T. R., Daniel E. E. Effect of vanadate on rat myometrium plasma membrane enzyme activities. Can J Physiol Pharmacol. 1980 Oct;58(10):1247–1250. doi: 10.1139/y80-189. [DOI] [PubMed] [Google Scholar]
  19. Haeusler G., Richards J. G., Thorens S. Noradrenaline contractions in rabbit mesenteric arteries skinned with saponin. J Physiol. 1981 Dec;321:537–556. doi: 10.1113/jphysiol.1981.sp014001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hagiwara S., Nakajima S. Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine, and manganese ions. J Gen Physiol. 1966 Mar;49(4):793–806. doi: 10.1085/jgp.49.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hamon G., Worcel M. Electrophysiological study of the action of angiotensin II on the rat myometrium. Circ Res. 1979 Aug;45(2):234–243. doi: 10.1161/01.res.45.2.234. [DOI] [PubMed] [Google Scholar]
  22. Katz A. M. Regulation of cardiac muscle contractility. J Gen Physiol. 1967 Jul;50(6 Suppl):185–196. doi: 10.1085/jgp.50.6.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mironneau J., Eugene D., Mironneau C. Sodium action potentials induced by calcium chelation in rat uterine smooth muscle. Pflugers Arch. 1982 Nov 11;395(3):232–238. doi: 10.1007/BF00584815. [DOI] [PubMed] [Google Scholar]
  24. Mironneau J. Excitation-contraction coupling in voltage clamped uterine smooth muscle. J Physiol. 1973 Aug;233(1):127–141. doi: 10.1113/jphysiol.1973.sp010301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mironneau J., Mironneau C., Grosset A., Hamon G., Savineau J. P. Action of angiotensin II on the electrical and mechanical activity of rat uterine smooth muscle. Eur J Pharmacol. 1980 Dec 5;68(3):275–285. doi: 10.1016/0014-2999(80)90525-7. [DOI] [PubMed] [Google Scholar]
  26. Mironneau J. Voltage clamp analysis of the ionic currents in uterine smooth muscle using the double sucrose gap method. Pflugers Arch. 1974;352(3):197–120. doi: 10.1007/BF00590485. [DOI] [PubMed] [Google Scholar]
  27. Rubányi G., Balogh I., Kovách A. G., Somogyi E., Sótonyi P. Ultrastructure and localization of calcium in uterine smooth muscle. Acta Morphol Acad Sci Hung. 1980;28(3):269–279. [PubMed] [Google Scholar]
  28. Sakai K., Higuchi K., Yamaguchi T., Uchida M. Oxytocin-induced Ca-free contraction of rat uterine smooth muscle: effects of preincubation with EGTA and drugs. Gen Pharmacol. 1982;13(5):393–400. doi: 10.1016/0306-3623(82)90104-5. [DOI] [PubMed] [Google Scholar]
  29. Schirar A., Capponi A., Catt K. J. Elevation of uterine angiotensin II receptors during early pregnancy in the rat. Endocrinology. 1980 May;106(5):1521–1527. doi: 10.1210/endo-106-5-1521. [DOI] [PubMed] [Google Scholar]
  30. Taylor G. S., Paton D. M., Daniel E. E. Characteristics of electrogenic sodium pumping in rat myometrium. J Gen Physiol. 1970 Sep;56(3):360–375. doi: 10.1085/jgp.56.3.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Varecka L., Carafoli E. Vanadate-induced movements of Ca2+ and K+ in human red blood cells. J Biol Chem. 1982 Jul 10;257(13):7414–7421. [PubMed] [Google Scholar]
  32. Vassort G. Voltage-clamp analysis of transmembrane ionic currents in guinea-pig myometrium: evidence for an initial potassium activation triggered by calcium influx. J Physiol. 1975 Nov;252(3):713–734. doi: 10.1113/jphysiol.1975.sp011167. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES