Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1984 Feb;81(2):341–345. doi: 10.1111/j.1476-5381.1984.tb10084.x

Neonatal capsaicin treatment impairs vasopressin-mediated blood pressure recovery following acute hypotension.

T Bennett, S M Gardiner
PMCID: PMC1986879  PMID: 6704593

Abstract

Rats were treated with a single injection of either capsaicin (50 mg kg-1 s.c.) or vehicle on day 2 after birth. When the animals were adult, they were challenged with osmotic (water deprivation) and haemodynamic (acute hypotension) stimuli that normally evoke vasopressin release. Capsaicin-treated and vehicle-injected rats showed similar body weight losses and plasma osmolalities following 48 h of water deprivation. Thus it appears that neonatal treatment with capsaicin does not impair the antidiuretic response to plasma hyperosmolality. Following acute ganglion blockade in the presence of angiotensin converting enzyme inhibition, there was some recovery of blood pressure in the vehicle-injected rats, but recovery was significantly (P less than 0.001) less in the capsaicin-treated animals. The recovery may be attributed to vasopressin since it was abolished by an antagonist selective for the pressor action of the peptide (d(CH2)5DAVP). These results suggest that neonatal treatment with capsaicin impairs vasopressin-mediated recovery of blood pressure following acute hypotension. The possible involvement of baro- or chemoreceptor afferents is discussed.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews C. E., Jr, Brenner B. M. Relative contributions of arginine vasopressin and angiotensin II to maintenance of systemic arterial pressure in the anesthetized water-deprived rat. Circ Res. 1981 Feb;48(2):254–258. doi: 10.1161/01.res.48.2.254. [DOI] [PubMed] [Google Scholar]
  2. Bond S. M., Cervero F., McQueen D. S. Influence of neonatally administered capsaicin on baroreceptor and chemoreceptor reflexes in the adult rat. Br J Pharmacol. 1982 Nov;77(3):517–524. doi: 10.1111/j.1476-5381.1982.tb09326.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bunag R. D., Page I. H., McCubbin J. W. Inhibition of renin release by vasopressin and angiotensin. Cardiovasc Res. 1967 Jan;1(1):67–73. doi: 10.1093/cvr/1.1.67. [DOI] [PubMed] [Google Scholar]
  4. Dunn F. L., Brennan T. J., Nelson A. E., Robertson G. L. The role of blood osmolality and volume in regulating vasopressin secretion in the rat. J Clin Invest. 1973 Dec;52(12):3212–3219. doi: 10.1172/JCI107521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Furness J. B., Elliott J. M., Murphy R., Costa M., Chalmers J. P. Baroreceptor reflexes in conscious guinea-pigs are unaffected by depletion of cardiovascular substance P nerves. Neurosci Lett. 1982 Oct 23;32(3):285–290. doi: 10.1016/0304-3940(82)90308-1. [DOI] [PubMed] [Google Scholar]
  6. Gardiner S. M., Bennett T., Kemp P. A. Systemic arterial hypertension in rats exposed to short-term isolation; intra-arterial systolic and diastolic blood pressure and baroreflex sensitivity. Med Biol. 1980 Aug;58(4):232–239. [PubMed] [Google Scholar]
  7. Gavras H., Hatzinikolaou P., North W. G., Bresnahan M., Gavras I. Interaction of the sympathetic nervous system with vasopressin and renin in the maintenance of blood pressure. Hypertension. 1982 May-Jun;4(3):400–405. doi: 10.1161/01.hyp.4.3.400. [DOI] [PubMed] [Google Scholar]
  8. Lorez H. P., Haeusler G., Aeppli L. Substance P neurones in medullary baroreflex areas and baroreflex function of capsaicin-treated rats. Comparison with other primary afferent systems. Neuroscience. 1983 Mar;8(3):507–523. doi: 10.1016/0306-4522(83)90196-3. [DOI] [PubMed] [Google Scholar]
  9. Manning M., Lammek B., Kruszynski M., Seto J., Sawyer W. H. Design of potent and selective antagonists of the vasopressor responses to arginine-vasopressin. J Med Chem. 1982 Apr;25(4):408–414. doi: 10.1021/jm00346a015. [DOI] [PubMed] [Google Scholar]
  10. Nagy J. I., Hunt S. P., Iversen L. L., Emson P. C. Biochemical and anatomical observations on the degeneration of peptide-containing primary afferent neurons after neonatal capsaicin. Neuroscience. 1981;6(10):1923–1934. doi: 10.1016/0306-4522(81)90032-4. [DOI] [PubMed] [Google Scholar]
  11. Raff H., Shinsako J., Keil L. C., Dallman M. F. Vasopressin, ACTH, and corticosteroids during hypercapnia and graded hypoxia in dogs. Am J Physiol. 1983 May;244(5):E453–E458. doi: 10.1152/ajpendo.1983.244.5.E453. [DOI] [PubMed] [Google Scholar]
  12. Schrier R. W., Bichet D. G. Osmotic and nonosmotic control of vasopressin release and the pathogenesis of impaired water excretion in adrenal, thyroid, and edematous disorders. J Lab Clin Med. 1981 Jul;98(1):1–15. [PubMed] [Google Scholar]
  13. Shade R. E., Davis J. O., Johnson J. A., Witty R. T. Effects of renal arterial infusion of sodium and potassium on renin secretion in the dog. Circ Res. 1972 Nov;31(5):719–727. doi: 10.1161/01.res.31.5.719. [DOI] [PubMed] [Google Scholar]
  14. Share L. Role of cardiovascular receptors in the control of ADH release. Cardiology. 1976;61 Suppl 1:51–64. doi: 10.1159/000169792. [DOI] [PubMed] [Google Scholar]
  15. Thorén P. Role of cardiac vagal C-fibers in cardiovascular control. Rev Physiol Biochem Pharmacol. 1979;86:1–94. doi: 10.1007/BFb0031531. [DOI] [PubMed] [Google Scholar]
  16. Zerbe R. L., Henry D. P., Robertson G. L. Vasopressin response to orthostatic hypotension. Etiologic and clinical implications. Am J Med. 1983 Feb;74(2):265–271. doi: 10.1016/0002-9343(83)90625-3. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES