Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1984 Dec;83(4):863–870. doi: 10.1111/j.1476-5381.1984.tb16525.x

The dependence of excitatory junction potential amplitude on the external calcium concentration in mouse vas deferens during narcotic withdrawal.

R Einstein, N A Lavidis
PMCID: PMC1986993  PMID: 6151411

Abstract

The dependence of neurotransmitter release on calcium was evaluated in adrenergic terminals from mice that were acutely withdrawn from chronic morphine treatment (CMT). A two fold increase in the number of writhes in response to an i.p. injection of acetylcholine was induced in mice by CMT and subsequent withdrawal. A shift to the left in the relationship between the excitatory junction potential (e.j.p.) amplitude and extracellular calcium concentration ([Ca]o) was induced in vasa deferentia from CMT-withdrawn mice. A reduction in the degree of facilitation of transmitter release during a short low-frequency train of impulses and an increase in the amount of transmitter release during a high-frequency train of impulses was induced in vasa deferentia from CMT-withdrawn mice. The adaptive mechanism of the terminals to the sustained presence of morphine may involve an increase in the probability that the release sites will release transmitter either via increase in calcium influx or an increase in the affinity of calcium to the hypothetical X-receptor.

Full text

PDF
863

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURNSTOCK G., HOLMAN M. E. The transmission of excitation from autonomic nerve to smooth muscle. J Physiol. 1961 Jan;155:115–133. doi: 10.1113/jphysiol.1961.sp006617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennet M. R., Lavidis N. A. Variation in quantal secretion at different release sites along developing and mature motor terminal branches. Brain Res. 1982 Sep;281(1):1–9. doi: 10.1016/0165-3806(82)90107-9. [DOI] [PubMed] [Google Scholar]
  3. Bennett M. R. An electrophysiological analysis of the storage and release of noradrenaline at sympathetic nerve terminals. J Physiol. 1973 Mar;229(2):515–531. doi: 10.1113/jphysiol.1973.sp010151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennett M. R., Fisher C. The effects of calcium ions on the binomial parameters that control acetylcholine release during trains of nerve impulses at amphibian neuromuscular synapses. J Physiol. 1977 Oct;271(3):673–698. doi: 10.1113/jphysiol.1977.sp012020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bennett M. R., Florin T. An electrophysiological analysis of the effect of Ca ions on neuromuscular transmission in the mouse vas deferens. Br J Pharmacol. 1975 Sep;55(1):97–104. doi: 10.1111/j.1476-5381.1975.tb07616.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bennett M. R., Lavidis N. A. An electrophysiological analysis of the effects of morphine on the calcium dependence of neuromuscular transmission in the mouse vas deferens. Br J Pharmacol. 1980 Jun;69(2):185–191. doi: 10.1111/j.1476-5381.1980.tb07889.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bennett M. R., Lavidis N. A. The effect of calcium ions on the secretion of quanta evoked by an impulse at nerve terminal release sites. J Gen Physiol. 1979 Oct;74(4):429–456. doi: 10.1085/jgp.74.4.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cardenas H. L., Ross D. H. Calcium depletion of synaptosomes after morphine treatment. Br J Pharmacol. 1976 Aug;57(4):521–526. doi: 10.1111/j.1476-5381.1976.tb10379.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Collier H. O., Cuthbert N. J., Francis D. L. Model of opiate dependence in the guinea-pig isolated ileum. Br J Pharmacol. 1981 Aug;73(4):921–932. doi: 10.1111/j.1476-5381.1981.tb08747.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Collier H. O., Dinneen L. C., Johnson C. A., Schneider C. The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br J Pharmacol Chemother. 1968 Feb;32(2):295–310. doi: 10.1111/j.1476-5381.1968.tb00973.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cox B. M., Padhya R. Opiate binding and effect in ileum preparations from normal and morphine pretreated guinea-pigs. Br J Pharmacol. 1977 Oct;61(2):271–278. doi: 10.1111/j.1476-5381.1977.tb08415.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dodge F. A., Jr, Rahamimoff R. Co-operative action a calcium ions in transmitter release at the neuromuscular junction. J Physiol. 1967 Nov;193(2):419–432. doi: 10.1113/jphysiol.1967.sp008367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ehrenpreis S., Greenberg J., Comaty J. E. Mechanism of development of tolerance to injected morphine by guinea pig ileum. Life Sci. 1975 Jul 1;17(1):49–54. doi: 10.1016/0024-3205(75)90233-7. [DOI] [PubMed] [Google Scholar]
  14. Einstein R., Lavidis N. A. The dependence of excitatory junction potential amplitude on the external calcium concentration in narcotic tolerant mouse vas deferens. Br J Pharmacol. 1984 Dec;83(4):853–861. doi: 10.1111/j.1476-5381.1984.tb16524.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Frederickson R. C., Hewes C. R., Aiken J. W. Correlation between the in vivo and an in vitro expression of opiate withdrawal precipitated by naloxone: their antagonism by l-(-)-delta9-tetrahydrocannabinol. J Pharmacol Exp Ther. 1976 Nov;199(2):375–384. [PubMed] [Google Scholar]
  16. Guerrero-Munoz F., Cerreta K. V., Guerrero M. L., Way E. L. Effect of morphine on synaptosomal Ca++ uptake. J Pharmacol Exp Ther. 1979 Apr;209(1):132–136. [PubMed] [Google Scholar]
  17. Harris R. A., Yamamoto H., Loh H. H., Way E. L. Discrete changes in brain calcium with morphine analgesia, tolerance-dependence, and abstinence. Life Sci. 1977 Feb 1;20(3):501–505. doi: 10.1016/0024-3205(77)90393-9. [DOI] [PubMed] [Google Scholar]
  18. Höllt V., Dum J., Bläsig J., Schubert P., Herz A. Comparison of in vivo and in vitro parameters of opiate receptor binding in naive and tolerant dependent rodents. Life Sci. 1975 Jun 15;16(12):1823–1828. doi: 10.1016/0024-3205(75)90284-2. [DOI] [PubMed] [Google Scholar]
  19. Illes P., North R. A. Effects of divalent cations and normorphine on spontaneous excitatory junction potentials in the mouse vas deferens. Br J Pharmacol. 1982 Apr;75(4):599–604. doi: 10.1111/j.1476-5381.1982.tb09179.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Illes P., Schulz R. Inhibition of neuroeffector transmission by morphine in the vas deferens of naive and morphine-treated mice. Br J Pharmacol. 1980;71(1):195–200. doi: 10.1111/j.1476-5381.1980.tb10926.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Johnson S. M., Westfall D. P., Howard S. A., Fleming W. W. Sensitivities of the isolated ileal longitudinal smooth muscle-myenteric plexus and hypogastric nerve-vas deferens of the guinea pig after chronic morphine pellet implantation. J Pharmacol Exp Ther. 1978 Jan;204(1):54–66. [PubMed] [Google Scholar]
  22. Klee W. A., Streaty R. A. Narcotic receptor sites in morphine-dependent rats. Nature. 1974 Mar 1;248(5443):61–63. doi: 10.1038/248061a0. [DOI] [PubMed] [Google Scholar]
  23. Lee N. M., Ho I., Loh H. H. Effect of chronic morphine treatment on brain chromatin template activities in mice. Biochem Pharmacol. 1975 Nov 1;24(21):1983–1987. doi: 10.1016/0006-2952(75)90386-x. [DOI] [PubMed] [Google Scholar]
  24. MARTIN A. R. A further study of the statistical composition on the end-plate potential. J Physiol. 1955 Oct 28;130(1):114–122. doi: 10.1113/jphysiol.1955.sp005397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Morita K., North R. A. Opiate activation of potassium conductance in myenteric neurons: inhibition by calcium ion. Brain Res. 1982 Jun 17;242(1):145–150. doi: 10.1016/0006-8993(82)90504-2. [DOI] [PubMed] [Google Scholar]
  26. North R. A., Vitek L. V. The effect of chronic morphine treatment of excitatory junction potentials in the mouse vas deferens. Br J Pharmacol. 1980 Mar;68(3):399–405. doi: 10.1111/j.1476-5381.1980.tb14553.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pollock D., Muir T. C., MacDonald A., Henderson G. Morphine-induced changes in the sensitivity of the isolated colon and vas deferens of the rat. Eur J Pharmacol. 1972 Dec;20(3):321–328. doi: 10.1016/0014-2999(72)90193-8. [DOI] [PubMed] [Google Scholar]
  28. Schulz R., Cartwright C. Effect of morphine on serotonin release from myenteric plexus of the guinea pig. J Pharmacol Exp Ther. 1974 Sep;190(3):420–430. [PubMed] [Google Scholar]
  29. Schulz R., Cartwright C., Goldstein A. Reversibility of morphine tolerance and dependence in guinea pig brain and myenteric plexus. Nature. 1974 Sep 27;251(5473):329–331. doi: 10.1038/251329a0. [DOI] [PubMed] [Google Scholar]
  30. Schulz R., Cartwright C. Sensitization of the smooth muscle by prostaglandin E1 contributes to reversal of drug-induced inhibition of the guinea-pig ileum. Naunyn Schmiedebergs Arch Pharmacol. 1976 Sep;294(3):257–260. doi: 10.1007/BF00508393. [DOI] [PubMed] [Google Scholar]
  31. Schulz R., Goldstein A. Morphine tolerance and supersensitivity to 5-hydroxytryptamine in the myenteric plexus of the guinea-pig. Nature. 1973 Jul 20;244(5412):168–170. doi: 10.1038/244168a0. [DOI] [PubMed] [Google Scholar]
  32. Schulz R., Herz A. Aspects of opiate dependence in the myenteric plexus of the guinea-pig. Life Sci. 1976 Oct 15;19(8):1117–1127. doi: 10.1016/0024-3205(76)90246-0. [DOI] [PubMed] [Google Scholar]
  33. Takagi K., Takayanagi I., Irikura T., Nishino K., Ichinoseki N., Shishido K. Responses of the isolated ileum of the morphine-tolerant guinea pig. Arch Int Pharmacodyn Ther. 1965 Nov;158(1):39–44. [PubMed] [Google Scholar]
  34. Ward A., Takemori A. E. Studies on the narcotic receptor in the guinea-pig ileum. J Pharmacol Exp Ther. 1976 Oct;199(1):117–123. [PubMed] [Google Scholar]
  35. Yamamoto H., Harris R. A., Loh H. H., Way E. L. Effects of acute and chronic morphine treatments on calcium localization and binding in brain. J Pharmacol Exp Ther. 1978 May;205(2):255–264. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES