Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1984 Nov;83(3):667–676. doi: 10.1111/j.1476-5381.1984.tb16220.x

The roles of stored calcium in contractions of cat tracheal smooth muscle produced by electrical stimulation, acetylcholine and high K+.

Y Ito, T Itoh
PMCID: PMC1987081  PMID: 6439272

Abstract

Effects of direct or indirect (nerve-mediated) muscle stimulation, acetylcholine (ACh), caffeine and procaine on the membrane and mechanical properties of smooth muscle cells of the cat trachea were investigated by means of double sucrose-gap and isometric tension recording methods. Outward current pulses (2 s in duration) applied to the muscle tissue in the presence of tetrodotoxin (10(-7)M), atropine (10(-6)M) and propranolol (10(-6)M) evoked no action potential (spike); however, when the depolarization exceeded 9 mV, a contraction was evoked. The spike and contraction evoked by outward current pulses in the presence of tetraethylammonium (TEA, 10 mM) were suppressed by treatment of the tissue with either Ca2+-free EGTA (2 mM) containing solution or Mn2+ (5 mM). In the presence of procaine (10 mM), outward current pulses evoked an action potential but no contraction. Field stimulation of short duration (50 microseconds) applied to the whole tissue produced an excitation of the intrinsic nerves and evoked excitatory junction potentials (e.j.ps), and when the amplitude of e.j.ps exceeded 4 mV, a twitch contraction occurred. E.j.p. was more effective in producing a contraction than was the membrane depolarization evoked by outward current pulses. Amplitudes of contractions evoked by exogenous ACh (10(-5)M) were much larger than those evoked by 128 mM-[K]0 or caffeine (10 mM), in normal Krebs solution. When the amplitudes of the contractions produced by 128 mM [K]0 were defined as a relative amplitude of 1.0, the mean amplitudes of contraction produced by ACh (10(-5)M) or caffeine were 2.5 +/- 0.20 or 1.2 +/- 0.26, respectively. In Ca2+-free EGTA (2 mM)-containing solution, the contraction induced by 128 mM-[K]0 was rapidly abolished, whereas the contractions evoked by caffeine (10 mM) or the initial phasic contraction produced by ACh (10(-5)M) were largely unaffected. When the amount of Ca2+ stored in the muscle cell was estimated from the amplitude of caffeine-induced contraction evoked in Ca2+-free solution, procaine (10 mM) applied simultaneously with Ca2+, after depletion of Ca2+ from the cells by means of caffeine, increased the amount of Ca2+ stored to 1.31 +/- 0.14 (n = 6) times the control value. However, ACh (10(-7)M) or excess concentrations of [K]0 applied with Ca2+ did not increase the amount of Ca2+ stored in the caffeine-sensitive intracellular compartment.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
667

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Casteels R., Raeymaekers L. The action of acetylcholine and catecholamines on an intracellular calcium store in the smooth muscle cells of the guinea-pig taenia coli. J Physiol. 1979 Sep;294:51–68. doi: 10.1113/jphysiol.1979.sp012914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ebashi S. Excitation-contraction coupling. Annu Rev Physiol. 1976;38:293–313. doi: 10.1146/annurev.ph.38.030176.001453. [DOI] [PubMed] [Google Scholar]
  3. Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
  4. Farley J. M., Miles P. R. The sources of calcium for acetylcholine-induced contractions of dog tracheal smooth muscle. J Pharmacol Exp Ther. 1978 Nov;207(2):340–346. [PubMed] [Google Scholar]
  5. Himori N., Taira N. Differential effects of the calcium-antagonistic vasodilators, nifedipine and verapamil, on the tracheal musculature and vasculature of the dog. Br J Pharmacol. 1980 Apr;68(4):595–597. doi: 10.1111/j.1476-5381.1980.tb10848.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ito Y., Tajima K. Actions of indomethacin and prostaglandins on neuro-effector transmission in the dog trachea. J Physiol. 1981;319:379–392. doi: 10.1113/jphysiol.1981.sp013915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ito Y., Tajima K. Dual effects of catecholamines on pre- and post-junctional membranes in the dog trachea. Br J Pharmacol. 1982 Mar;75(3):433–440. doi: 10.1111/j.1476-5381.1982.tb09158.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ito Y., Takeda K. Non-adrenergic inhibitory nerves and putative transmitters in the smooth muscle of cat trachea. J Physiol. 1982 Sep;330:497–511. doi: 10.1113/jphysiol.1982.sp014355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Itoh T., Furukawa K., Kajiwara M., Kitamura K., Suzuki H., Ito Y., Kuriyama H. Effects of 2-nicotinamidoethyl nitrate on smooth muscle cells and on adrenergic transmission in the guinea-pig and porcine mesenteric arteries. J Pharmacol Exp Ther. 1981 Jul;218(1):260–270. [PubMed] [Google Scholar]
  10. Itoh T., Izumi H., Kuriyama H. Mechanisms of relaxation induced by activation of beta-adrenoceptors in smooth muscle cells of the guinea-pig mesenteric artery. J Physiol. 1982 May;326:475–493. doi: 10.1113/jphysiol.1982.sp014207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Itoh T., Kuriyama H., Nanjo T. Effects of calcium and manganese ions on mechanical properties of intact and skinned muscles from the guinea-pig stomach. J Physiol. 1982 Dec;333:555–576. doi: 10.1113/jphysiol.1982.sp014469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Itoh T., Kuriyama H., Suzuki H. Differences and similarities in the noradrenaline- and caffeine-induced mechanical responses in the rabbit mesenteric artery. J Physiol. 1983 Apr;337:609–629. doi: 10.1113/jphysiol.1983.sp014645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Itoh T., Kuriyama H., Suzuki H. Excitation--contraction coupling in smooth muscle cells of the guinea-pig mesenteric artery. J Physiol. 1981 Dec;321:513–535. doi: 10.1113/jphysiol.1981.sp014000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuriyama H., Ito Y., Suzuki H., Kitamura K., Itoh T. Factors modifying contraction-relaxation cycle in vascular smooth muscles. Am J Physiol. 1982 Nov;243(5):H641–H662. doi: 10.1152/ajpheart.1982.243.5.H641. [DOI] [PubMed] [Google Scholar]
  15. Nagao T., Iwasawa Y., Ikezawa K., Murata S., Sato M. [Bronchodilator actions of diltiazem in vitro and in vivo (author's transl)]. Nihon Yakurigaku Zasshi. 1981 May;77(5):553–558. [PubMed] [Google Scholar]
  16. Suzuki H., Kuriyama H. Observation of quantal release of noradrenaline from vascular smooth muscles in potassium-free solution. Jpn J Physiol. 1980;30(4):665–670. doi: 10.2170/jjphysiol.30.665. [DOI] [PubMed] [Google Scholar]
  17. Suzuki H., Morita K., Kuriyama H. Innervation and properties of the smooth muscle of the dog trachea. Jpn J Physiol. 1976;26(3):303–320. doi: 10.2170/jjphysiol.26.303. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES