Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1984 Oct;83(2):567–575. doi: 10.1111/j.1476-5381.1984.tb16521.x

Potentiation of the action of adenosine on cerebral cortical neurones by the tricyclic antidepressants.

J W Phillis
PMCID: PMC1987110  PMID: 6487906

Abstract

The effects of four tricyclic antidepressants, nortriptyline, iprindole, chlorimipramine and desipramine on adenosine-evoked depressions of the firings of rat cerebral cortical neurones has been studied. When applied iontophoretically, all four substances enhanced the depressant actions of iontophoretically applied adenosine but did not affect the depressant actions of the uptake-resistant analogue, adenosine 5'-N-ethylcarboxamide (NECA). Nortriptyline and iprindole administered intravenously (1 mg kg-1) enhanced the depressant actions of iontophoretically applied adenosine. When applied by larger iontophoretic currents, all four antidepressants inhibited the firing of cerebral cortical neurones. Chlorimipramine- and desimipramine-elicited depressions were antagonized by intravenously administered caffeine, an adenosine antagonist. Earlier studies showed the tricyclic antidepressants inhibit the uptake of adenosine by rat brain cerebral cortical synaptosomes. The present results demonstrate that four antidepressants are able to potentiate the action of adenosine and that this occurs when these compounds are given in behaviourally meaningful doses. The specificity of the potentiation is demonstrated by the failure of these compounds to potentiate the depressant actions of an uptake-resistant analogue of adenosine, NECA. Antagonism of the inhibitory effects of the antidepressants on neuronal firings by caffeine, indicates that these compounds can enhance the extracellular levels of endogenously released adenosine sufficiently to depress cell firing.

Full text

PDF
567

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barraco R. A., Coffin V. L., Altman H. J., Phillis J. W. Central effects of adenosine analogs on locomotor activity in mice and antagonism of caffeine. Brain Res. 1983 Aug 8;272(2):392–395. doi: 10.1016/0006-8993(83)90591-7. [DOI] [PubMed] [Google Scholar]
  2. Berndt S., Schwabe U. Effect of psychotropic drugs on phosphodiesterase and cyclic AMP level in rat brain in vivo. Brain Res. 1973 Dec 7;63:303–312. doi: 10.1016/0006-8993(73)90097-8. [DOI] [PubMed] [Google Scholar]
  3. Bickel M. H., Graber B. E., Moor M. Distribution of chlorpromazine and imipramine in adipose and other tissues of rats. Life Sci. 1983 Nov 14;33(20):2025–2031. doi: 10.1016/0024-3205(83)90742-7. [DOI] [PubMed] [Google Scholar]
  4. Biegon A., Samuel D. The in vivo distribution of an antidepressant drug (DMI) in male and female rats. Psychopharmacology (Berl) 1979 Nov;65(3):259–263. doi: 10.1007/BF00492213. [DOI] [PubMed] [Google Scholar]
  5. Bradshaw C. M., Roberts M. H., Szabadi E. Effects of imipramine and desipramine on responses of single cortical neurones to noradrenaline and 5-hydroxytryptamine. Br J Pharmacol. 1974 Nov;52(3):349–358. doi: 10.1111/j.1476-5381.1974.tb08602.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bunney B. S., Aghajanian G. K. Dopamine and norepinephrine innervated cells in the rat prefrontal cortex: pharmacological differentiation using microiontophoretic techniques. Life Sci. 1976 Dec 1;19(11):1783–1789. doi: 10.1016/0024-3205(76)90087-4. [DOI] [PubMed] [Google Scholar]
  7. Crawley J. N., Patel J., Marangos P. J. Adenosine uptake inhibitors potentiate the sedative effects of adenosine. Neurosci Lett. 1983 Apr 11;36(2):169–174. doi: 10.1016/0304-3940(83)90260-4. [DOI] [PubMed] [Google Scholar]
  8. Dunwiddie T. V., Worth T. Sedative and anticonvulsant effects of adenosine analogs in mouse and rat. J Pharmacol Exp Ther. 1982 Jan;220(1):70–76. [PubMed] [Google Scholar]
  9. Garver D. L., Davis J. M. Biogenic amine hypotheses of affective disorders. Life Sci. 1979 Jan 29;24(5):383–394. doi: 10.1016/0024-3205(79)90208-x. [DOI] [PubMed] [Google Scholar]
  10. Hrdina P. D., Dubas T. C. Brain distribution and kinetics of desipramine in the rat. Can J Physiol Pharmacol. 1981 Feb;59(2):163–167. doi: 10.1139/y81-027. [DOI] [PubMed] [Google Scholar]
  11. Huang M., Daly J. W. Interrelationships among the levels of ATP, adenosine and cyclic AMP in incubated slices of guinea-pig cerebral cortex: effects of depolarizing agents, psychotropic drugs and metabolic inhibitors. J Neurochem. 1974 Aug;23(2):393–404. doi: 10.1111/j.1471-4159.1974.tb04371.x. [DOI] [PubMed] [Google Scholar]
  12. Jhamandas K., Dumbrille A. Regional release of [3H]adenosine derivatives from rat brain in vivo: effect of excitatory amino acids, opiate agonists, and benzodiazepines. Can J Physiol Pharmacol. 1980 Nov;58(11):1262–1278. doi: 10.1139/y80-193. [DOI] [PubMed] [Google Scholar]
  13. Jones R. S., Roberts M. H. Potentiation of responses to monoamines by antidepressants after destruction of monoamine afferents. Br J Pharmacol. 1979 Mar;65(3):501–510. doi: 10.1111/j.1476-5381.1979.tb07858.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jori A., Bernardi D., Muscettola G., Garattini S. Brain levels of imipramine and desipramine after combined treatment with these drugs in rats. Eur J Pharmacol. 1971 Jun;15(1):85–90. doi: 10.1016/0014-2999(71)90082-3. [DOI] [PubMed] [Google Scholar]
  15. Kanof P. D., Greengard P. Brain histamine receptors as targets for antidepressant drugs. Nature. 1978 Mar 23;272(5651):329–333. doi: 10.1038/272329a0. [DOI] [PubMed] [Google Scholar]
  16. Kant G. J., Bates V. E., Lenox R. H., Meyerhoff J. L. Effects of acute and chronic desmethylimipramine on levels of cyclic AMP in vivo. Biochem Pharmacol. 1983 Feb 15;32(4):732–735. doi: 10.1016/0006-2952(83)90505-1. [DOI] [PubMed] [Google Scholar]
  17. Kawasaki H., Watanabe S., Ueki S. Effects of psychotropic drugs on pressor and behavioral responses to brain stimulation in unrestrained, unanesthetized rats. Pharmacol Biochem Behav. 1979 Jun;10(6):907–915. doi: 10.1016/0091-3057(79)90066-2. [DOI] [PubMed] [Google Scholar]
  18. Kodama T., Matsukado Y., Suzuki T., Tanaka S., Shimizu H. Stimulated formation of adenosine 3',5'-monophosphate by desipramine in brain slices. Biochim Biophys Acta. 1971 Oct;252(1):165–170. doi: 10.1016/0304-4165(71)90105-x. [DOI] [PubMed] [Google Scholar]
  19. Kristinsson J., Jóhannesson T., Bjarnason O., Geirsson G. Organ levels of amitriptyline and nortriptyline in fatal amitriptyline poisoning. Acta Pharmacol Toxicol (Copenh) 1983 Feb;52(2):150–152. doi: 10.1111/j.1600-0773.1983.tb03417.x. [DOI] [PubMed] [Google Scholar]
  20. Kristinsson J., Jóhannesson T., Bjarnason O., Geirsson G. Organ levels of amitriptyline and nortriptyline in fatal amitriptyline poisoning. Acta Pharmacol Toxicol (Copenh) 1983 Feb;52(2):150–152. doi: 10.1111/j.1600-0773.1983.tb03417.x. [DOI] [PubMed] [Google Scholar]
  21. Neil J. F., Himmelhoch J. M., Mallinger A. G., Mallinger J., Hanin I. Caffeinism complicating hypersomnic depressive episodes. Compr Psychiatry. 1978 Jul-Aug;19(4):377–385. doi: 10.1016/0010-440x(78)90021-4. [DOI] [PubMed] [Google Scholar]
  22. Phillis J. W., Edstrom J. P., Kostopoulos G. K., Kirkpatrick J. R. Effects of adenosine and adenine nucleotides on synaptic transmission in the cerebral cortex. Can J Physiol Pharmacol. 1979 Nov;57(11):1289–1312. doi: 10.1139/y79-194. [DOI] [PubMed] [Google Scholar]
  23. Phillis J. W., Kostopoulos G. K. Adenosine as a putative transmitter in the cerebral cortex. Studies with potentiators and antagonists. Life Sci. 1975 Oct 10;17(7):1085–1094. doi: 10.1016/0024-3205(75)90329-x. [DOI] [PubMed] [Google Scholar]
  24. Phillis J. W., Wu P. H. The role of adenosine and its nucleotides in central synaptic transmission. Prog Neurobiol. 1981;16(3-4):187–239. doi: 10.1016/0301-0082(81)90014-9. [DOI] [PubMed] [Google Scholar]
  25. Pull I., McIlwain H. Centrally-acting drugs and related compounds examined for action on output of adenine derivatives from superfused tissues of the brain. Biochem Pharmacol. 1976 Feb 1;25(3):293–297. doi: 10.1016/0006-2952(76)90217-3. [DOI] [PubMed] [Google Scholar]
  26. Radulovacki M., Miletich R. S., Green R. D. N6 (L-phenylisopropyl) adenosine (L-PHA) increases slow-wave sleep (S2) and decreases wakefulness in rats. Brain Res. 1982 Aug 19;246(1):178–180. doi: 10.1016/0006-8993(82)90161-5. [DOI] [PubMed] [Google Scholar]
  27. Rickels K., Weise C., Case G., Hucker H. Tricyclic plasma levels in depressed outpatients treated with amitriptyline. Psychopharmacology (Berl) 1983;80(1):14–18. doi: 10.1007/BF00427486. [DOI] [PubMed] [Google Scholar]
  28. Rigal F., Eschalier A., Devoize J. L., Pechadre J. C. Activities of five antidepressants in a behavioral pain test in rats. Life Sci. 1983 Jun 27;32(26):2965–2971. doi: 10.1016/0024-3205(83)90647-1. [DOI] [PubMed] [Google Scholar]
  29. Sattin A., Stone T. W., Taylor D. A. Biochemical and electropharmaceutical studies with tricyclic antidepressants in rat and guinea-pig cerebral cortex. Life Sci. 1978 Dec 25;23(26):2621–2626. doi: 10.1016/0024-3205(78)90379-x. [DOI] [PubMed] [Google Scholar]
  30. Schultz J. Psychoactive drug effects on a system which generates cyclic AMP in brain. Nature. 1976 Jun 3;261(5559):417–418. doi: 10.1038/261417a0. [DOI] [PubMed] [Google Scholar]
  31. Simpson G. M., Pi E. H., Abdelmalek E., Boyd J. L., Carroll R. S., Cooper T. B., Miller A. Relationship between plasma desipramine levels and clinical outcome for RDC major depressive inpatients. Psychopharmacology (Berl) 1983;80(3):240–242. doi: 10.1007/BF00436161. [DOI] [PubMed] [Google Scholar]
  32. Stone T. W., Taylor D. A. Antidepressant drugs potentiate suppression by adenosine of neuronal firing in rat cerebral cortex. Neurosci Lett. 1979 Jan;11(1):93–97. doi: 10.1016/0304-3940(79)90062-4. [DOI] [PubMed] [Google Scholar]
  33. Sulakhe P. V., Phillis J. W. The release of 3H-adenosine and its derivatives from cat sensorimotor cortex. Life Sci. 1975 Aug 15;17(4):551–555. doi: 10.1016/0024-3205(75)90089-2. [DOI] [PubMed] [Google Scholar]
  34. U'Prichard D. C., Greenberg D. A., Sheehan P. P., Snyder S. H. Tricyclic antidepressants: therapeutic properties and affinity for alpha-noradrenergic receptor binding sites in the brain. Science. 1978 Jan 13;199(4325):197–198. doi: 10.1126/science.202024. [DOI] [PubMed] [Google Scholar]
  35. Vetulani J., Sulser F. Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP-generating system in limbic forebrain. Nature. 1975 Oct 9;257(5526):495–496. doi: 10.1038/257495a0. [DOI] [PubMed] [Google Scholar]
  36. Wu P. H., Barraco R. A., Phillis J. W. Further studies on the inhibition of adenosine uptake into rat brain synaptosomes by adenosine derivatives and methylxanthines. Gen Pharmacol. 1984;15(3):251–254. doi: 10.1016/0306-3623(84)90169-1. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES