Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1985 Mar;84(3):685–688. doi: 10.1111/j.1476-5381.1985.tb16150.x

Sodium load and high affinity ouabain binding in rat and guinea-pig cardiac tissue.

S Herzig, K Mohr
PMCID: PMC1987145  PMID: 2985161

Abstract

An estimation of the actual Na/K-ATPase transport activity in intact cardiac cells was made by measuring the binding of [3H]-ouabain to rat and guinea-pig ventricular strips. At the low [3H]-ouabain concentration of 1 nM equilibrium binding was hardly obtained after an incubation time of five hours. Different procedures known to alter the sodium load of the cardiac preparations influenced [3H]-ouabain binding: the sodium ionophore monensin enhanced [3H]-ouabain binding, the local anaesthetic dibucaine and a reduction of external sodium ion concentration diminished [3H]-ouabain binding; [3H]-ouabain binding was similarly affected by these procedures in the rat and guinea-pig. Since [3H]-ouabain binding occurred predominantly at the high-affinity binding sites of rat myocardium under the applied experimental conditions, it was concluded that these binding sites represent Na/K-ATPase molecules involved in sodium ion transport.

Full text

PDF
685

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. J., Schwartz A., Grupp G., Grupp I., Lee S. W., Wallick E. T., Powell T., Twist V. W., Gathiram P. High-affinity ouabain binding site and low-dose positive inotropic effect in rat myocardium. Nature. 1982 Mar 11;296(5853):167–169. doi: 10.1038/296167a0. [DOI] [PubMed] [Google Scholar]
  2. Alsen C., Peters T., Scheufler E. Studies on the mechanism of the positive inotropic effect of ATX II (Anemonia sulcata) on isolated guinea pig atria. J Cardiovasc Pharmacol. 1982 Jan-Feb;4(1):63–69. doi: 10.1097/00005344-198201000-00011. [DOI] [PubMed] [Google Scholar]
  3. Arletti R., Bazzani C. Further studies on the frequency-dependent inotropic effect of ouabain on mammalian cardiac muscle. Pharmacol Res Commun. 1982 Sep;14(8):725–730. doi: 10.1016/s0031-6989(82)80078-7. [DOI] [PubMed] [Google Scholar]
  4. Bentfeld M., Lüllmann H., Peters T., Proppe D. Interdependence of ion transport and the action of quabain in heart muscle. Br J Pharmacol. 1977 Sep;61(1):19–27. doi: 10.1111/j.1476-5381.1977.tb09735.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dutta S., Marks B. H. Factors that regulate ouabain-H3 accumulation by the isolated guinea-pig heart. J Pharmacol Exp Ther. 1969 Dec;170(2):318–325. [PubMed] [Google Scholar]
  6. Erdmann E., Philipp G., Scholz H. Cardiac glycoside receptor, (Na+ + K+)-ATPase activity and force of contraction in rat heart. Biochem Pharmacol. 1980 Dec;29(24):3219–3229. doi: 10.1016/0006-2952(80)90295-6. [DOI] [PubMed] [Google Scholar]
  7. Finet M., Godfraind T., Noel F. The inotropic effect of ouabain and its antagonism by dihydroouabain in rat isolated atria and ventricles in relation to specific binding sites. Br J Pharmacol. 1983 Dec;80(4):751–759. doi: 10.1111/j.1476-5381.1983.tb10067.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Forssmann W. G., Girardier L. A study of the T system in rat heart. J Cell Biol. 1970 Jan;44(1):1–19. doi: 10.1083/jcb.44.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grupp G., DePover A., Grupp I. L., Schwartz A. Analysis of the inotropic action of ouabain in rat ventricles: two apparent ouabain inotropic responses. Proc Soc Exp Biol Med. 1984 Jan;175(1):39–43. doi: 10.3181/00379727-175-41763. [DOI] [PubMed] [Google Scholar]
  10. Herzig S., Mohr K. Action of ouabain on rat heart: comparison with its effect on guinea-pig heart. Br J Pharmacol. 1984 May;82(1):135–142. doi: 10.1111/j.1476-5381.1984.tb16450.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kennedy R. H., Akera T., Brody T. M. How increased sodium influx enhances digoxin-induced arrhythmias in guinea-pig atrial muscle. Eur J Pharmacol. 1983 May 6;89(3-4):199–209. doi: 10.1016/0014-2999(83)90495-8. [DOI] [PubMed] [Google Scholar]
  12. Mansier P., Lelievre L. G. CA2+-free perfusion of rat heart reveals a (Na+ + K+)ATPase form highly sensitive to ouabain. Nature. 1982 Dec 9;300(5892):535–537. doi: 10.1038/300535a0. [DOI] [PubMed] [Google Scholar]
  13. Noel F., Godfraind T. Heterogeneity of ouabain specific binding sites and (Na+ + K+)-ATPase inhibition in microsomes from rat heart. Biochem Pharmacol. 1984 Jan 1;33(1):47–53. doi: 10.1016/0006-2952(84)90369-1. [DOI] [PubMed] [Google Scholar]
  14. Temma K., Akera T. Decreases in active sodium pumping sites and their interaction with ouabain caused by low Na+ incubation of isolated guinea-pig atrial muscle. J Pharmacol Exp Ther. 1983 Jun;225(3):660–666. [PubMed] [Google Scholar]
  15. Yamamoto S., Akera T., Brody T. M. Sodium influx rate and ouabain-sensitive rubidium uptake in isolated guinea pig atria. Biochim Biophys Acta. 1979 Aug 7;555(2):270–284. doi: 10.1016/0005-2736(79)90167-6. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES