Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1984 Sep;83(1):305–311. doi: 10.1111/j.1476-5381.1984.tb10147.x

Pressure reversal of the action of octanol on postsynaptic membranes from Torpedo.

L M Braswell, K W Miller, J F Sauter
PMCID: PMC1987166  PMID: 6487895

Abstract

Octanol increases the binding of [3H]-acetylcholine to the desensitized state of the nicotinic receptor in postsynaptic membranes prepared from Torpedo californica. This increase in binding results from an increase in the affinity of [3H]-acetylcholine for its receptor without any change in the number of sites or the shape of the acetylcholine binding curve. High pressures of helium (300 atm) decrease [3H]-acetylcholine binding by a mechanism that changes only the affinity of acetylcholine binding. Helium pressure reverses the effect of octanol on the affinity of [3H]-acetylcholine for its receptor. This pressure reversal of the action of octanol at a postsynaptic membrane is consistent either with pressure counteracting an octanol-induced membrane expansion or with independent mechanisms for the actions of octanol and pressure. The data do not conform with a mechanism in which pressure displaces octanol from a binding site on the receptor protein.

Full text

PDF
305

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyd N. D., Cohen J. B. Kinetics of binding of [3H]acetylcholine and [3H]carbamoylcholine to Torpedo postsynaptic membranes: slow conformational transitions of the cholinergic receptor. Biochemistry. 1980 Nov 11;19(23):5344–5353. doi: 10.1021/bi00564a031. [DOI] [PubMed] [Google Scholar]
  2. Cohen J. B., Weber M., Huchet M., Changeux J. P. Purification from Torpedo marmorata electric tissue of membrane fragments particularly rich in cholinergic receptor protein. FEBS Lett. 1972 Oct 1;26(1):43–47. doi: 10.1016/0014-5793(72)80538-6. [DOI] [PubMed] [Google Scholar]
  3. Distèche A. Effects of pressure on the dissociation of weak acids. Symp Soc Exp Biol. 1972;26:27–60. [PubMed] [Google Scholar]
  4. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  5. Franks N. P., Lieb W. R. Molecular mechanisms of general anaesthesia. Nature. 1982 Dec 9;300(5892):487–493. doi: 10.1038/300487a0. [DOI] [PubMed] [Google Scholar]
  6. Gage P. W., Hamill O. P. Effects of anesthetics on ion channels in synapses. Int Rev Physiol. 1981;25:1–45. [PubMed] [Google Scholar]
  7. Heidmann T., Changeux J. P. Fast kinetic studies on the interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor from Torpedo marmorata. Eur J Biochem. 1979 Feb 15;94(1):255–279. doi: 10.1111/j.1432-1033.1979.tb12893.x. [DOI] [PubMed] [Google Scholar]
  8. Heremans K. High pressure effects on proteins and other biomolecules. Annu Rev Biophys Bioeng. 1982;11:1–21. doi: 10.1146/annurev.bb.11.060182.000245. [DOI] [PubMed] [Google Scholar]
  9. Janoff A. S., Pringle M. J., Miller K. W. Correlation of general anesthetic potency with solubility in membranes. Biochim Biophys Acta. 1981 Nov 20;649(1):125–128. doi: 10.1016/0005-2736(81)90017-1. [DOI] [PubMed] [Google Scholar]
  10. Kita Y., Miller K. W. Partial molar volumes of some 1-alkanols in erythrocyte ghosts and lipid bilayers. Biochemistry. 1982 Jun 8;21(12):2840–2847. doi: 10.1021/bi00541a005. [DOI] [PubMed] [Google Scholar]
  11. Neubig R. R., Boyd N. D., Cohen J. B. Conformations of Torpedo acetylcholine receptor associated with ion transport and desensitization. Biochemistry. 1982 Jul 6;21(14):3460–3467. doi: 10.1021/bi00257a032. [DOI] [PubMed] [Google Scholar]
  12. Parmentier J. L., Bennett P. B. Hydrostatic pressure does not antagonize halothane effects on single neurons of Aplysia californica. Anesthesiology. 1980 Jul;53(1):9–14. doi: 10.1097/00000542-198007000-00003. [DOI] [PubMed] [Google Scholar]
  13. Parmentier J. L., Shrivastav B. B., Bennett P. B. Hydrostatic pressure reduces synaptic efficiency by inhibiting transmitter release. Undersea Biomed Res. 1981 Sep;8(3):175–183. [PubMed] [Google Scholar]
  14. Richards C. D. The action of anaesthetics on synaptic transmission. Gen Pharmacol. 1978;9(5):287–293. doi: 10.1016/0306-3623(78)90063-0. [DOI] [PubMed] [Google Scholar]
  15. Roth S. H. Physical mechanisms of anesthesia. Annu Rev Pharmacol Toxicol. 1979;19:159–178. doi: 10.1146/annurev.pa.19.040179.001111. [DOI] [PubMed] [Google Scholar]
  16. Roth S. H., Smith R. A., Paton W. D. Pressure antagonism of anaesthetic-induced conduction failure in frog peripheral nerve. Br J Anaesth. 1976 Jul;48(7):621–628. doi: 10.1093/bja/48.7.621. [DOI] [PubMed] [Google Scholar]
  17. Sauter J. F., Wankowicz P. G., Miller K. W. An apparatus for performing filtration assays in hyperbaric atmospheres. Undersea Biomed Res. 1980 Dec;7(4):257–263. [PubMed] [Google Scholar]
  18. Young A. P., Sigman D. S. Allosteric effects of volatile anesthetics on the membrane-bound acetylcholine receptor protein. I. Stabilization of the high-affinity state. Mol Pharmacol. 1981 Nov;20(3):498–505. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES