Abstract
Octanol increases the binding of [3H]-acetylcholine to the desensitized state of the nicotinic receptor in postsynaptic membranes prepared from Torpedo californica. This increase in binding results from an increase in the affinity of [3H]-acetylcholine for its receptor without any change in the number of sites or the shape of the acetylcholine binding curve. High pressures of helium (300 atm) decrease [3H]-acetylcholine binding by a mechanism that changes only the affinity of acetylcholine binding. Helium pressure reverses the effect of octanol on the affinity of [3H]-acetylcholine for its receptor. This pressure reversal of the action of octanol at a postsynaptic membrane is consistent either with pressure counteracting an octanol-induced membrane expansion or with independent mechanisms for the actions of octanol and pressure. The data do not conform with a mechanism in which pressure displaces octanol from a binding site on the receptor protein.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boyd N. D., Cohen J. B. Kinetics of binding of [3H]acetylcholine and [3H]carbamoylcholine to Torpedo postsynaptic membranes: slow conformational transitions of the cholinergic receptor. Biochemistry. 1980 Nov 11;19(23):5344–5353. doi: 10.1021/bi00564a031. [DOI] [PubMed] [Google Scholar]
- Cohen J. B., Weber M., Huchet M., Changeux J. P. Purification from Torpedo marmorata electric tissue of membrane fragments particularly rich in cholinergic receptor protein. FEBS Lett. 1972 Oct 1;26(1):43–47. doi: 10.1016/0014-5793(72)80538-6. [DOI] [PubMed] [Google Scholar]
- Distèche A. Effects of pressure on the dissociation of weak acids. Symp Soc Exp Biol. 1972;26:27–60. [PubMed] [Google Scholar]
- ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
- Franks N. P., Lieb W. R. Molecular mechanisms of general anaesthesia. Nature. 1982 Dec 9;300(5892):487–493. doi: 10.1038/300487a0. [DOI] [PubMed] [Google Scholar]
- Gage P. W., Hamill O. P. Effects of anesthetics on ion channels in synapses. Int Rev Physiol. 1981;25:1–45. [PubMed] [Google Scholar]
- Heidmann T., Changeux J. P. Fast kinetic studies on the interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor from Torpedo marmorata. Eur J Biochem. 1979 Feb 15;94(1):255–279. doi: 10.1111/j.1432-1033.1979.tb12893.x. [DOI] [PubMed] [Google Scholar]
- Heremans K. High pressure effects on proteins and other biomolecules. Annu Rev Biophys Bioeng. 1982;11:1–21. doi: 10.1146/annurev.bb.11.060182.000245. [DOI] [PubMed] [Google Scholar]
- Janoff A. S., Pringle M. J., Miller K. W. Correlation of general anesthetic potency with solubility in membranes. Biochim Biophys Acta. 1981 Nov 20;649(1):125–128. doi: 10.1016/0005-2736(81)90017-1. [DOI] [PubMed] [Google Scholar]
- Kita Y., Miller K. W. Partial molar volumes of some 1-alkanols in erythrocyte ghosts and lipid bilayers. Biochemistry. 1982 Jun 8;21(12):2840–2847. doi: 10.1021/bi00541a005. [DOI] [PubMed] [Google Scholar]
- Neubig R. R., Boyd N. D., Cohen J. B. Conformations of Torpedo acetylcholine receptor associated with ion transport and desensitization. Biochemistry. 1982 Jul 6;21(14):3460–3467. doi: 10.1021/bi00257a032. [DOI] [PubMed] [Google Scholar]
- Parmentier J. L., Bennett P. B. Hydrostatic pressure does not antagonize halothane effects on single neurons of Aplysia californica. Anesthesiology. 1980 Jul;53(1):9–14. doi: 10.1097/00000542-198007000-00003. [DOI] [PubMed] [Google Scholar]
- Parmentier J. L., Shrivastav B. B., Bennett P. B. Hydrostatic pressure reduces synaptic efficiency by inhibiting transmitter release. Undersea Biomed Res. 1981 Sep;8(3):175–183. [PubMed] [Google Scholar]
- Richards C. D. The action of anaesthetics on synaptic transmission. Gen Pharmacol. 1978;9(5):287–293. doi: 10.1016/0306-3623(78)90063-0. [DOI] [PubMed] [Google Scholar]
- Roth S. H. Physical mechanisms of anesthesia. Annu Rev Pharmacol Toxicol. 1979;19:159–178. doi: 10.1146/annurev.pa.19.040179.001111. [DOI] [PubMed] [Google Scholar]
- Roth S. H., Smith R. A., Paton W. D. Pressure antagonism of anaesthetic-induced conduction failure in frog peripheral nerve. Br J Anaesth. 1976 Jul;48(7):621–628. doi: 10.1093/bja/48.7.621. [DOI] [PubMed] [Google Scholar]
- Sauter J. F., Wankowicz P. G., Miller K. W. An apparatus for performing filtration assays in hyperbaric atmospheres. Undersea Biomed Res. 1980 Dec;7(4):257–263. [PubMed] [Google Scholar]
- Young A. P., Sigman D. S. Allosteric effects of volatile anesthetics on the membrane-bound acetylcholine receptor protein. I. Stabilization of the high-affinity state. Mol Pharmacol. 1981 Nov;20(3):498–505. [PubMed] [Google Scholar]
