Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1984 Sep;83(1):187–193. doi: 10.1111/j.1476-5381.1984.tb10134.x

Potassium induces relaxation and hyperpolarization of circular muscles but contraction of longitudinal muscles of pig duodenum.

I Kimura, M Kimura, M Kimura
PMCID: PMC1987192  PMID: 6487888

Abstract

The mechanisms by which K+ relaxes circular muscles of pig duodenum were investigated, and compared with the response of the longitudinal muscles to K+. Circular muscles were concentration-dependently relaxed by 8.3-23.6 mM K+, but contracted by 47.2-143.4 mM K+. Longitudinal muscles were contracted by 11.8-94.4 mM K+. The relaxation of circular muscles was correlated with hyperpolarization (4 mV), but evoked Ca2+ spikes were not suppressed. Neither ouabain (0.14 microM) nor phentolamine (10 microM) blocked the relaxation, but tetrodotoxin (TTX, 0.63 microM) blocked both the relaxation and hyperpolarization. Mesaconitine (0.16 microM) increased the relaxation. Inhibitory junction potentials and concomitant relaxations were also blocked by TTX. The results suggest that K+-induced relaxation is caused by the release of a non-adrenergic inhibitory transmitter.

Full text

PDF
187

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe Y., Tomita T. Cable properties of smooth muscle. J Physiol. 1968 May;196(1):87–100. doi: 10.1113/jphysiol.1968.sp008496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bauer V., Kuriyama H. The nature of non-cholinergic, non-adrenergic transmission in longitudinal and circular muscles of the guinea-pig ileum. J Physiol. 1982 Nov;332:375–391. doi: 10.1113/jphysiol.1982.sp014419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beetens J. R., Van Hove C., Rampart M., Herman A. G. Acetylcholine stimulates the release of prostacyclin by rabbit aorta endothelium. J Pharm Pharmacol. 1983 Apr;35(4):251–252. doi: 10.1111/j.2042-7158.1983.tb02924.x. [DOI] [PubMed] [Google Scholar]
  4. Bonaccorsi A., Hermsmeyer K., Aprigliano O., Smith C. B., Bohr D. F. Mechanism of potassium relaxation of arterial muscle. Blood Vessels. 1977;14(5):261–276. doi: 10.1159/000158133. [DOI] [PubMed] [Google Scholar]
  5. Chen W. T., Brace R. A., Scott J. B., Anderson D. K., Haddy F. J. The mechanism of the vasodilator action of potassium. Proc Soc Exp Biol Med. 1972 Jul;140(3):820–824. doi: 10.3181/00379727-140-36560. [DOI] [PubMed] [Google Scholar]
  6. Gibson A., Tucker J. F. The effects of vasoactive intestinal polypeptide and of adenosine 5'-triphosphate on the isolated anococcygeus muscle of the mouse. Br J Pharmacol. 1982 Sep;77(1):97–103. doi: 10.1111/j.1476-5381.1982.tb09274.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibson A., Yu O. Biphasic non-adrenergic, non-cholinergic relaxations of the mouse anococcygeus muscle. Br J Pharmacol. 1983 Jun;79(2):611–615. doi: 10.1111/j.1476-5381.1983.tb11036.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Haddy F. J. Potassium and blood vessels. Life Sci. 1975 May 15;16(10):1489–1497. doi: 10.1016/0024-3205(75)90065-x. [DOI] [PubMed] [Google Scholar]
  9. Hagen E. C., Johnson J. C., Webb R. C. Ouabain binding and potassium relaxation in aortas from renal hypertensive rabbits. Am J Physiol. 1982 Dec;243(6):H896–H902. doi: 10.1152/ajpheart.1982.243.6.H896. [DOI] [PubMed] [Google Scholar]
  10. Holman M. E., Weinrich J. P. The effects of calcium and magnesium on inhibitory junctional transmission in smooth muscle of guinea pig small intestine. Pflugers Arch. 1975 Oct 28;360(2):109–119. doi: 10.1007/BF00580534. [DOI] [PubMed] [Google Scholar]
  11. Ishi T., Shimo Y. Potassium-induced relaxation of the rat anococcygeus muscle. Arch Int Pharmacodyn Ther. 1980 Jan;243(1):27–36. [PubMed] [Google Scholar]
  12. Ishii T., Shimo Y. Potassium-induced relaxations of the guinea-pig taenia coli. Arch Int Pharmacodyn Ther. 1979 May;239(1):36–44. [PubMed] [Google Scholar]
  13. Kimura I., Kimura M., Nakayama N., Kimura M. Relaxation and Ca-spike suppression in circular and longitudinal muscles of hog bile duct ampulla by CCK-C-terminal peptides. Arch Int Pharmacodyn Ther. 1983 Oct;265(2):320–334. [PubMed] [Google Scholar]
  14. Reiner O. The role of the electrogenic sodium pump in the potassium relaxation of the rabbit ear artery. Naunyn Schmiedebergs Arch Pharmacol. 1978 Jul;303(3):213–220. doi: 10.1007/BF00498046. [DOI] [PubMed] [Google Scholar]
  15. Toda N. Potassium-induced relaxation in isolated cerebral arteries contracted with prostaglandin F2alpha. Pflugers Arch. 1976 Aug 24;364(3):235–242. doi: 10.1007/BF00581761. [DOI] [PubMed] [Google Scholar]
  16. Toda N. Responsiveness to potassium and calcium ions of isolated cerebral arteries. Am J Physiol. 1974 Nov;227(5):1206–1211. doi: 10.1152/ajplegacy.1974.227.5.1206. [DOI] [PubMed] [Google Scholar]
  17. Webb R. C., Bohr D. F. Potassium-induced relaxation as an indicator of Na+-K+ ATPase activity in vascular smooth muscle. Blood Vessels. 1978;15(1-3):198–207. doi: 10.1159/000158166. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES