Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1984 May;82(1):135–142. doi: 10.1111/j.1476-5381.1984.tb16450.x

Action of ouabain on rat heart: comparison with its effect on guinea-pig heart.

S Herzig, K Mohr
PMCID: PMC1987235  PMID: 6329386

Abstract

The inotropic dose-response curve of ouabain in rat cardiac ventricular strips exceeded a concentration range of two decades (1 X 10(-7) M to 3 X 10(-5) M) displaying an intermediate plateau phase. In guinea-pig ventricular strips the inotropic ouabain concentrations spanned only one decade (1 X 10(-7) M-1 X 10(-6) M). Ouabain-intoxication in guinea-pig ventricular strips occurring at 3 X 10(-6) M consisted of arrhythmia and contracture, while in rat ventricular strips at the toxic concentration of 1 X 10(-4) M only a progressive increase in diastolic tension was observed. By means of atomic absorption spectroscopy the ouabain-induced loss of cellular potassium and gain of sodium in rat ventricular strips was detected only at concentrations of ouabain higher than 10(-4) M. Ouabain reduced the activity of Na/K-ATPase prepared from rat and guinea-pig cardiac ventricles to half of its maximum at 6.5 X 10(-5) M in rat and 1.0 X 10(-6) M in guinea-pig, rat heart Na/K-ATPase thus being about 60 fold less sensitive towards ouabain. Specific [3H]-ouabain binding to membrane suspensions prepared from rat and guinea-pig ventricles was characterized by a similar affinity in rat (KD = 4 X 10(-8) M) and guinea-pig (KD = 13 X 10(-8) M). The number of ouabain binding sites in rat membranes was only about 10% of the number found in guinea-pig membranes. In rat the presence of additional ouabain-binding with low affinity and high capacity seemed possible, but could not be verified for methodological reasons. In the light of the biochemical results and binding data, the wider range of ouabain concentration exerting a positive inotropic effect in the rat may be attributed to the existence in the latter of two populations of receptors with different affinities for ouabain and different capacities. In contrast, in the guinea-pig, there is a single population. Nevertheless it is probable that all the receptors in both species are part of the Na/K-ATPase complex and mediate a positive inotropic effect after ouabain-binding in an identical manner.

Full text

PDF
135

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. J., Schwartz A., Grupp G., Grupp I., Lee S. W., Wallick E. T., Powell T., Twist V. W., Gathiram P. High-affinity ouabain binding site and low-dose positive inotropic effect in rat myocardium. Nature. 1982 Mar 11;296(5853):167–169. doi: 10.1038/296167a0. [DOI] [PubMed] [Google Scholar]
  2. Akera T., Brody T. M. The role of Na+,K+-ATPase in the inotropic action of digitalis. Pharmacol Rev. 1977 Sep;29(3):187–220. [PubMed] [Google Scholar]
  3. Akera T., Larsen F. S., Brody T. M. The effect of ouabain on sodium- and potassium-activated adenosine triphosphatase from the hearts of several mammalian species. J Pharmacol Exp Ther. 1969 Nov;170(1):17–26. [PubMed] [Google Scholar]
  4. Allen J. C., Schwartz A. A possible biochemical explanation for the insensitivity of the rat to cardiac glycosides. J Pharmacol Exp Ther. 1969 Jul;168(1):42–46. [PubMed] [Google Scholar]
  5. BENFORADO J. M. Frequency-dependent pharmacological and physiological effects on the rat ventricle strip. J Pharmacol Exp Ther. 1958 Jan;122(1):86–100. [PubMed] [Google Scholar]
  6. Bentfeld M., Lüllmann H., Peters T., Proppe D. Interdependence of ion transport and the action of quabain in heart muscle. Br J Pharmacol. 1977 Sep;61(1):19–27. doi: 10.1111/j.1476-5381.1977.tb09735.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Borsch-Galetke E., Dransfeld H., Greeff K. Specific activity and sensitivity of strophanthin of the Na + +K + -activated ATPase in rats and guinea-pigs with hypoadrenalism. Naunyn Schmiedebergs Arch Pharmacol. 1972;274(1):74–80. doi: 10.1007/BF00501008. [DOI] [PubMed] [Google Scholar]
  8. Brown L., Werdan K., Erdmann E. Consequences of specific [3H]ouabain binding to guinea pig left atria and cardiac cell membranes. Biochem Pharmacol. 1983 Feb 1;32(3):423–435. doi: 10.1016/0006-2952(83)90519-1. [DOI] [PubMed] [Google Scholar]
  9. Busse F., Lüllman H., Peters T. Concentration dependence of the binding of ouabain to isolated guinea pig atria. J Cardiovasc Pharmacol. 1979 Nov-Dec;1(6):687–698. doi: 10.1097/00005344-197911000-00009. [DOI] [PubMed] [Google Scholar]
  10. Dunst J., Lüllmann H., Mohr K. Influence of cationic amphiphilic drugs on the characteristics of ouabain-binding to cardiac Na+/K+-ATPase. Biochem Pharmacol. 1983 May 15;32(10):1595–1600. doi: 10.1016/0006-2952(83)90333-7. [DOI] [PubMed] [Google Scholar]
  11. Erdmann E., Philipp G., Scholz H. Cardiac glycoside receptor, (Na+ + K+)-ATPase activity and force of contraction in rat heart. Biochem Pharmacol. 1980 Dec;29(24):3219–3229. doi: 10.1016/0006-2952(80)90295-6. [DOI] [PubMed] [Google Scholar]
  12. Finet M., Noel F., Godfraind T. Inotropic effect and binding sites of ouabain to rat heart. Arch Int Pharmacodyn Ther. 1982 Mar;256(1):168–170. [PubMed] [Google Scholar]
  13. Gheyouche R., Uzan A., Le Fur G., Corgier M. Decrease in [3H]ouabain binding sites in heart and brain from spontaneously hypertensive rats. Experientia. 1981 May 15;37(5):492–493. doi: 10.1007/BF01986156. [DOI] [PubMed] [Google Scholar]
  14. HOFFMAN B. F., KELLY J. J., Jr Effects of rate and rhythm on contraction of rat papillary muscle. Am J Physiol. 1959 Dec;197:1199–1204. doi: 10.1152/ajplegacy.1959.197.6.1199. [DOI] [PubMed] [Google Scholar]
  15. KOCH-WESER J., BLINKS J. R. THE INFLUENCE OF THE INTERVAL BETWEEN BEATS ON MYOCARDIAL CONTRACTILITY. Pharmacol Rev. 1963 Sep;15:601–652. [PubMed] [Google Scholar]
  16. Koomen J. M., Van Gilst W. H., Zimmerman A. N., Van Noordwijk J. A concentration-dependent biphasic positive inotropic action of ouabain on isolated heart of rat and guinea-pig. Arch Int Pharmacodyn Ther. 1982 Feb;255(2):212–219. [PubMed] [Google Scholar]
  17. Ku D. D., Akera T., Tobin T., Brody T. M. Comparative species studies on the effect of monovalent cations and ouabain on cardiac Na+, K+-adenosine triphosphatase and contractile force. J Pharmacol Exp Ther. 1976 May;197(2):458–469. [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Lee K. S., Klaus W. The subcellular basis for the mechanism of inotropic action of cardiac glycosides. Pharmacol Rev. 1971 Sep;23(3):193–261. [PubMed] [Google Scholar]
  20. MCDOWALL R. J., MUNRO A. F., ZAYAT A. F. Sodium and cardiac muscle. J Physiol. 1955 Dec 29;130(3):615–624. doi: 10.1113/jphysiol.1955.sp005431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mansier P., Lelievre L. G. CA2+-free perfusion of rat heart reveals a (Na+ + K+)ATPase form highly sensitive to ouabain. Nature. 1982 Dec 9;300(5892):535–537. doi: 10.1038/300535a0. [DOI] [PubMed] [Google Scholar]
  22. Matsui H., Schwartz A. Purification and properties of a highly active ouabain-sensitive Na+, K+-dependent adenosinetriphosphatase from cardiac tissue. Biochim Biophys Acta. 1966 Nov 15;128(2):380–390. doi: 10.1016/0926-6593(66)90185-8. [DOI] [PubMed] [Google Scholar]
  23. Philipson K. D., Nishimoto A. Y. ATP-dependent Na+ transport in cardiac sarcolemmal vesicles. Biochim Biophys Acta. 1983 Aug 24;733(1):133–141. doi: 10.1016/0005-2736(83)90099-8. [DOI] [PubMed] [Google Scholar]
  24. REPKE K., PORTIUS H. J. UBER DIE IDENTITAET DER IONENPUMPEN-ATPASE IN DER ZELLMEMBRAN DES HERZMUSKELS MIT EINEM DIGITALIS-REZEPTORENZYM. Experientia. 1963 Sep 15;19:452–458. doi: 10.1007/BF02150643. [DOI] [PubMed] [Google Scholar]
  25. Repke K., Est M., Portius H. J. Uber die Ursache der Speciesunterschiede in der Digitalisempfindlichkeit. Biochem Pharmacol. 1965 Dec;14(12):1785–1802. doi: 10.1016/0006-2952(65)90269-8. [DOI] [PubMed] [Google Scholar]
  26. Schwartz A., Lindenmayer G. E., Allen J. C. The sodium-potassium adenosine triphosphatase: pharmacological, physiological and biochemical aspects. Pharmacol Rev. 1975 Mar;27(01):3–134. [PubMed] [Google Scholar]
  27. Sharma V. K., Banerjee S. P. Specific (3H) ouabain binding to rat heart and skeletal muscle: effects of thyroidectomy. Mol Pharmacol. 1978 Jan;14(1):122–129. [PubMed] [Google Scholar]
  28. Werdan K., Zwissler B., Wagenknecht B., Krawietz W., Erdmann E. Quantitative correlation of cardiac glycoside binding to its receptor and inhibition of the sodium pump in chicken heart cells in culture. Biochem Pharmacol. 1983 Feb 15;32(4):757–760. doi: 10.1016/0006-2952(83)90513-0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES