Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1985 Feb;84(2):365–380. doi: 10.1111/j.1476-5381.1985.tb12921.x

Cardiovascular effects of bevantolol, a selective beta 1-adrenoceptor antagonist with a novel pharmacological profile.

I D Dukes, E M Vaughan Williams
PMCID: PMC1987306  PMID: 2858236

Abstract

Bevantolol was more potent in blocking the chronotropic than the hypotensive effects of isoprenaline in pithed rats. Bevantolol itself induced bradycardia, so that it was not possible to estimate the pA2 from nonparallel dose-response curves relating isoprenaline concentration to tachycardia. Bevantolol caused hypertension in pithed rats, an effect attenuated by phentolamine, implying that bevantolol may be an alpha-adrenoceptor agonist. Bevantolol potentiated the pressor effects of noradrenaline, the maximum potentiation equalling that produced by prior chemical sympathectomy with guanethidine, implying that bevantolol may block noradrenaline uptake. In isolated atria bevantolol-induced bradycardia was associated with a positive shift in take-off potential, a reduction in the maximum rate of depolarization (Vmax), and a lengthening of action potential duration (APD). No change in the slope of the slow diastolic depolarization occurred except at the highest concentration (18 mumol l(-1). In atrial and ventricular muscle bevantolol reduced Vmax and overshoot potential, implying reduction of fast inward sodium current (Class I antiarrhythmic action). In pithed rats bevantolol lengthened the P-R interval in the ECG, and produced atrioventricular (A-V) block, and bundle-branch block. In isolated A-V nodal preparations, intranodal conduction time was greatly increased, implying restriction of inward current through calcium channels responsible for nodal depolarization. Bevantolol had no negative inotropic effect in pithed rats, or in isolated atria, and did not alter the positive inotropic effect of raised extracellular calcium concentration, implying absence of restriction of current through calcium channels controlling contraction of the myocardium.

Full text

PDF
365

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attwell D., Cohen I., Eisner D., Ohba M., Ojeda C. The steady state TTX-sensitive ("window") sodium current in cardiac Purkinje fibres. Pflugers Arch. 1979 Mar 16;379(2):137–142. doi: 10.1007/BF00586939. [DOI] [PubMed] [Google Scholar]
  2. Bagwell E. E., Williams E. M. Further studies regarding the structure activity relationships of beta-adrenoceptor antagonists. Br J Pharmacol. 1973 Aug;48(4):686–692. doi: 10.1111/j.1476-5381.1973.tb08257.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carmeliet E., Saikawa T. Shortening of the action potential and reduction of pacemaker activity by lidocaine, quinidine, and procainamide in sheep cardiac purkinje fibers. An effect on Na or K currents? Circ Res. 1982 Feb;50(2):257–272. doi: 10.1161/01.res.50.2.257. [DOI] [PubMed] [Google Scholar]
  4. Colatsky T. J. Mechanisms of action of lidocaine and quinidine on action potential duration in rabbit cardiac Purkinje fibers. An effect on steady state sodium currents? Circ Res. 1982 Jan;50(1):17–27. doi: 10.1161/01.res.50.1.17. [DOI] [PubMed] [Google Scholar]
  5. Coraboeuf E., Deroubaix E., Coulombe A. Effect of tetrodotoxin on action potentials of the conducting system in the dog heart. Am J Physiol. 1979 Apr;236(4):H561–H567. doi: 10.1152/ajpheart.1979.236.4.H561. [DOI] [PubMed] [Google Scholar]
  6. Dukes I. D., Vaughan Williams E. M. Effects of selective alpha 1-, alpha 2-, beta 1-and beta 2-adrenoceptor stimulation on potentials and contractions in the rabbit heart. J Physiol. 1984 Oct;355:523–546. doi: 10.1113/jphysiol.1984.sp015436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dukes I. D., Vaughan Williams E. M. Electrophysiological effects of alpha-adrenoceptor antagonists in rabbit sino-atrial node, cardiac Purkinje cells and papillary muscles. Br J Pharmacol. 1984 Oct;83(2):419–426. doi: 10.1111/j.1476-5381.1984.tb16502.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dukes I. D., Vaughan Williams E. M. The multiple modes of action of propafenone. Eur Heart J. 1984 Feb;5(2):115–125. doi: 10.1093/oxfordjournals.eurheartj.a061621. [DOI] [PubMed] [Google Scholar]
  9. Gross G. J., Buck J. D., Warltier D. C., Hardman H. F. Beneficial actions of bevantolol on subendocardial blood flow and contractile function in ischemic myocardium. J Cardiovasc Pharmacol. 1979 Jan-Feb;1(1):139–147. doi: 10.1097/00005344-197901000-00013. [DOI] [PubMed] [Google Scholar]
  10. Hastings S. G., Smith R. D., Corey R. M., Essenburg A. D., Pettway C. E., Tessman D. K. Pharmacologic evaluation of CI-775, a cardioselective beta adrenergic antagonist. Arch Int Pharmacodyn Ther. 1977 Mar;226(1):81–99. [PubMed] [Google Scholar]
  11. Hoefle M. L., Hastings S. G., Meyer R. F., Corey R. M., Holmes A., Stratton C. D. Cardioselective beta-adrenergic blocking agents. 1. 1-((3,4-Dimethoxyphenethyl)amino)-3-aryloxy-2-propanols. J Med Chem. 1975 Feb;18(2):148–152. doi: 10.1021/jm00236a007. [DOI] [PubMed] [Google Scholar]
  12. Johnson E. M., Jr, O'Brien F. Evaluation of the permanent sympathectomy produced by the administration of guanethidine to adult rats. J Pharmacol Exp Ther. 1976 Jan;196(1):53–61. [PubMed] [Google Scholar]
  13. Mackay A. D., Gribbin H. R., Baldwin C. J., Tattersfield A. E. Assessment of bronchial beta blockade after oral bevantolol. Clin Pharmacol Ther. 1981 Jan;29(1):1–6. doi: 10.1038/clpt.1981.1. [DOI] [PubMed] [Google Scholar]
  14. Millar J. S., Williams E. M. Pacemaker selectivity: influence on rabbit atria of ionic environment and of alinidine, a possible anion antagonist. Cardiovasc Res. 1981 Jun;15(6):335–350. doi: 10.1093/cvr/15.6.335. [DOI] [PubMed] [Google Scholar]
  15. Sheridan D. J., Penkoske P. A., Sobel B. E., Corr P. B. Alpha adrenergic contributions to dysrhythmia during myocardial ischemia and reperfusion in cats. J Clin Invest. 1980 Jan;65(1):161–171. doi: 10.1172/JCI109647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vaughan Williams E. M., Papp J. G. The effect of oxprenolol on cardiac intracellular potentials in relation to its anti-arrhythmic, local anaesthetic and other properties. Postgrad Med J. 1970 Nov;(Suppl):22–32. [PubMed] [Google Scholar]
  17. Williams E. M., Bagwell E. E., Singh B. N. Cardiospecificity of -receptor blockade. A comparison of the relative potencies on cardiac and peripheral vascular -adrenoceptors of propranolol, of practolol and its ortho-substituted isomer, and of oxprenolol and its para-substituted isomer. Cardiovasc Res. 1973 Mar;7(2):226–240. doi: 10.1093/cvr/7.2.226. [DOI] [PubMed] [Google Scholar]
  18. Wittig J., Harrison L. A., Wallace A. G. Electrophysiological effects of lidocaine on distal Purkinje fibers of canine heart. Am Heart J. 1973 Jul;86(1):69–78. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES