Skip to main content
International Journal of Experimental Pathology logoLink to International Journal of Experimental Pathology
. 1995 Feb;76(1):55–64.

Induction and relief of nasal congestion in ferrets infected with influenza virus.

K S Chen 1, S S Bharaj 1, E C King 1
PMCID: PMC1997137  PMID: 7537523

Abstract

Susceptible ferrets intranasally infected with influenza virus consistently responded with maximal nasal secretion of virus, febrile reaction, and influx of inflammatory cells into nasal lumen on day 2 post infection (d.p.i.). Polymorphonuclear leucocytes were the earliest predominant cell, followed by monocytes/macrophages while lymphocytes were maintained as a minor population throughout the 7-day period. Nasal congestion level, continuously monitored by computer aided active anterior rhinomanometry, was reproducibly maximal at 2 d.p.i., diminished in intensity the next day and returned to the basal level within 7 d.p.i. Nasal congestion was effectively relieved by a single intranasal dose of 0.1% oxymetazoline or 0.2% phenylephrine, or a single intragastric administration of pseudoephedrine. Intranasal delivery of a single dose of 1% pyrilamine relieved nasal congestion while 0.8% ipratropium bromide and 30% cimetidine were ineffective. These results suggested that nasal congestion is regulated by alpha-adrenergic receptors in the mucosal vasculature or by H1 histamine receptor, but is unaffected by inhibitors of nasal secretion regulated by the cholinergic nervous system. The present study indicates that the infectious rhinitis ferret model provides a reproducible nasal congestion pattern that can be objectively measured by a refined active anterior rhinomanometric system. This labour intensive measurement, however, makes it difficult either to conduct a large population animal study or to use it for a rapid throughput screening of new drugs. The temporal relation between the influx of inflammatory cells into the nasal lumen and the onset of nasal congestion underlies the model's relevance to the exploration of the pathogenic mechanism(s) during viral rhinitis.

Full text

PDF
55

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerlund A., Klint T., Olén L., Rundcrantz H. Nasal decongestant effect of oxymetazoline in the common cold: an objective dose-response study in 106 patients. J Laryngol Otol. 1989 Aug;103(8):743–746. doi: 10.1017/s0022215100109958. [DOI] [PubMed] [Google Scholar]
  2. Barnett J. K., Cruse L. W., Proud D. Kinins are generated in nasal secretions during influenza A infections in ferrets. Am Rev Respir Dis. 1990 Jul;142(1):162–166. doi: 10.1164/ajrccm/142.1.162. [DOI] [PubMed] [Google Scholar]
  3. Borum P., Olsen L., Winther B., Mygind N. Ipratropium nasal spray: a new treatment for rhinorrhea in the common cold. Am Rev Respir Dis. 1981 Apr;123(4 Pt 1):418–420. doi: 10.1164/arrd.1981.123.4.418. [DOI] [PubMed] [Google Scholar]
  4. Bye C. E., Cooper J., Empey D. W., Fowle A. S., Hughes D. T., Letley E., O'Grady J. Effects of pseudoephedrine and triprolidine, alone and in combination, on symptoms of the common cold. Br Med J. 1980 Jul 19;281(6234):189–190. doi: 10.1136/bmj.281.6234.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cauna N., Cauna D., Hinderer K. H. Innervation of human nasal glands. J Neurocytol. 1972 Jul;1(1):49–60. doi: 10.1007/BF01098645. [DOI] [PubMed] [Google Scholar]
  6. Dressler W. E., Myers T., Rankell A. S., London S. J., Poetsch C. E. A system of rhinomanometry in the clinical evaluation of nasal decongestants. Ann Otol Rhinol Laryngol. 1977 May-Jun;86(3 Pt 1):310–317. doi: 10.1177/000348947708600306. [DOI] [PubMed] [Google Scholar]
  7. Eggleston P. A., Hendley J. O., Gwaltney J. M., Jr Mediators of immediate hypersensitivity in nasal secretions during natural colds and rhinovirus infection. Acta Otolaryngol Suppl. 1984;413:25–35. doi: 10.3109/00016488409128538. [DOI] [PubMed] [Google Scholar]
  8. Gaffey M. J., Gwaltney J. M., Jr, Sastre A., Dressler W. E., Sorrentino J. V., Hayden F. G. Intranasally and orally administered antihistamine treatment of experimental rhinovirus colds. Am Rev Respir Dis. 1987 Sep;136(3):556–560. doi: 10.1164/ajrccm/136.3.556. [DOI] [PubMed] [Google Scholar]
  9. Gaffey M. J., Hayden F. G., Boyd J. C., Gwaltney J. M., Jr Ipratropium bromide treatment of experimental rhinovirus infection. Antimicrob Agents Chemother. 1988 Nov;32(11):1644–1647. doi: 10.1128/aac.32.11.1644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gaffey M. J., Kaiser D. L., Hayden F. G. Ineffectiveness of oral terfenadine in natural colds: evidence against histamine as a mediator of common cold symptoms. Pediatr Infect Dis J. 1988 Mar;7(3):223–228. doi: 10.1097/00006454-198803000-00032. [DOI] [PubMed] [Google Scholar]
  11. Haff R. F., Schriver P. W., Engle C. G., Stewart R. C. Pathogenesis of influenza in ferrets. I. Tissue and blood manifestations of disease. J Immunol. 1966 Apr;96(4):659–667. [PubMed] [Google Scholar]
  12. Haff R. F. Symptomatic therapy of influenza rhinitis in ferrets by topical application of compounds. J Allergy. 1970 Mar;45(3):163–177. doi: 10.1016/0021-8707(70)90125-5. [DOI] [PubMed] [Google Scholar]
  13. Howard J. C., Jr, Kantner T. R., Lilienfield L. S., Princiotto J. V., Krum R. E., Crutcher J. E., Belman M. A., Danzig M. R. Effectiveness of antihistamines in the symptomatic management of the common cold. JAMA. 1979 Nov 30;242(22):2414–2417. [PubMed] [Google Scholar]
  14. Naclerio R. M., Proud D., Lichtenstein L. M., Kagey-Sobotka A., Hendley J. O., Sorrentino J., Gwaltney J. M. Kinins are generated during experimental rhinovirus colds. J Infect Dis. 1988 Jan;157(1):133–142. doi: 10.1093/infdis/157.1.133. [DOI] [PubMed] [Google Scholar]
  15. Reuman P. D., Keely S., Schiff G. M. Assessment of signs of influenza illness in the ferret model. J Virol Methods. 1989 Apr-May;24(1-2):27–34. doi: 10.1016/0166-0934(89)90004-9. [DOI] [PubMed] [Google Scholar]
  16. Roth R. P., Cantekin E. I., Bluestone C. D., Welch R. M., Cho Y. W. Nasal decongestant activity of pseudoephedrine. Ann Otol Rhinol Laryngol. 1977 Mar-Apr;86(2 Pt 1):235–242. doi: 10.1177/000348947708600216. [DOI] [PubMed] [Google Scholar]
  17. Smith H., Sweet C. Lessons for human influenza from pathogenicity studies with ferrets. Rev Infect Dis. 1988 Jan-Feb;10(1):56–75. doi: 10.1093/clinids/10.1.56. [DOI] [PubMed] [Google Scholar]
  18. Sperber S. J., Sorrentino J. V., Riker D. K., Hayden F. G. Evaluation of an alpha agonist alone and in combination with a nonsteroidal antiinflammatory agent in the treatment of experimental rhinovirus colds. Bull N Y Acad Med. 1989 Jan;65(1):145–160. [PMC free article] [PubMed] [Google Scholar]
  19. Wardell J. R., Jr, Familiar R. G., Haff R. F. A technique for measuring nasal airway resistance in ferrets. J Allergy. 1967 Aug;40(2):100–106. doi: 10.1016/0021-8707(67)90103-7. [DOI] [PubMed] [Google Scholar]
  20. Winther B., Farr B., Turner R. B., Hendley J. O., Gwaltney J. M., Jr, Mygind N. Histopathologic examination and enumeration of polymorphonuclear leukocytes in the nasal mucosa during experimental rhinovirus colds. Acta Otolaryngol Suppl. 1984;413:19–24. doi: 10.3109/00016488409128537. [DOI] [PubMed] [Google Scholar]

Articles from International Journal of Experimental Pathology are provided here courtesy of Wiley

RESOURCES