Skip to main content
International Journal of Experimental Pathology logoLink to International Journal of Experimental Pathology
. 1995 Jun;76(3):171–178.

Strain differences in vulnerability of hippocampal neurons to transient cerebral ischaemia in the rat.

H Iwasaki 1, Y Ohmachi 1, E Kume 1, J Krieglstein 1
PMCID: PMC1997166  PMID: 7547427

Abstract

Strain differences in the vulnerability of hippocampal neurons to an ischaemic insult were investigated in Sprague-Dawley, Wistar and Fischer 344 rats. Transient global brain ischaemia was produced for 5 minutes by a combination of bilateral carotid artery occlusion and oligaemic hypotension (40 mmHg) induced by exsanguination. The number of viable neurons in the CA1 subfield was counted under a light microscope 7 days after the ischaemic insult. The density of viable neurons in the CA1 subfield of normal rats was around 150 cells/mm of CA1 length in all the strains examined; after global brain ischaemia, this parameter in Sprague-Dawley, Wistar and Fischer 344 strain rats was approximately 110, 120, and 70, respectively. The results suggest that the hippocampal CA1 neurons of Fischer 344 strain rats are more vulnerable to ischaemic insult than those of the other strains. There were many F344 rats (8/21) which showed atypical vasculature patterns in the posterior region of the circle of Willis, suggesting less blood flow through anastomosis from basilar artery to posterior cerebral artery and/or ill-balanced blood flow between left and right hemispheres. These anatomical variations in the circle of Willis may in part contribute to the strain differences in the vulnerability to cerebral ischaemia.

Full text

PDF
171

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown J. O. The morphology of circulus arteriosus cerebri in rats. Anat Rec. 1966 Sep;156(1):99–106. doi: 10.1002/ar.1091560112. [DOI] [PubMed] [Google Scholar]
  2. Busto R., Dietrich W. D., Globus M. Y., Valdés I., Scheinberg P., Ginsberg M. D. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab. 1987 Dec;7(6):729–738. doi: 10.1038/jcbfm.1987.127. [DOI] [PubMed] [Google Scholar]
  3. Coyle P. Different susceptibilities to cerebral infarction in spontaneously hypertensive (SHR) and normotensive Sprague-Dawley rats. Stroke. 1986 May-Jun;17(3):520–525. doi: 10.1161/01.str.17.3.520. [DOI] [PubMed] [Google Scholar]
  4. Coyle P., Panzenbeck M. J. Collateral development after carotid artery occlusion in Fischer 344 rats. Stroke. 1990 Feb;21(2):316–321. doi: 10.1161/01.str.21.2.316. [DOI] [PubMed] [Google Scholar]
  5. Eklöf B., Siesjö B. K. The effect of bilateral carotid artery ligation upon the blood flow and the energy state of the rat brain. Acta Physiol Scand. 1972 Oct;86(2):155–165. doi: 10.1111/j.1748-1716.1972.tb05322.x. [DOI] [PubMed] [Google Scholar]
  6. Ginsberg M. D., Busto R. Rodent models of cerebral ischemia. Stroke. 1989 Dec;20(12):1627–1642. doi: 10.1161/01.str.20.12.1627. [DOI] [PubMed] [Google Scholar]
  7. LEVINE S. Anoxic-ischemic encephalopathy in rats. Am J Pathol. 1960 Jan;36:1–17. [PMC free article] [PubMed] [Google Scholar]
  8. Mennel H. D., Sauer D., Rossberg C., Bielenberg G. W., Krieglstein J. Morphology of tissue damage due to experimental cerebral ischemia in rats. Exp Pathol. 1988;35(4):219–230. doi: 10.1016/s0232-1513(88)80091-4. [DOI] [PubMed] [Google Scholar]
  9. Ogata J., Fujishima M., Morotomi Y., Omae T. Cerebral infarction following bilateral carotid artery ligation in normotensive and spontaneously hypertensive rats: a pathological study. Stroke. 1976 Jan-Feb;7(1):54–60. doi: 10.1161/01.str.7.1.54. [DOI] [PubMed] [Google Scholar]
  10. Payan H. M., Levine S., Strebel R. Effects of cerebral ischemia in various strains of rats. Proc Soc Exp Biol Med. 1965 Oct;120(1):208–209. doi: 10.3181/00379727-120-30487. [DOI] [PubMed] [Google Scholar]
  11. Pulsinelli W. A., Brierley J. B. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke. 1979 May-Jun;10(3):267–272. doi: 10.1161/01.str.10.3.267. [DOI] [PubMed] [Google Scholar]
  12. Sano T., Patel P. M., Drummond J. C., Cole D. J. Combined therapy with dizocilpine and levemopamil does not reduce ischemic neuronal injury in rats. J Neurosurg Anesthesiol. 1993 Jul;5(3):194–201. doi: 10.1097/00008506-199307000-00010. [DOI] [PubMed] [Google Scholar]
  13. Simon R. P., Griffiths T., Evans M. C., Swan J. H., Meldrum B. S. Calcium overload in selectively vulnerable neurons of the hippocampus during and after ischemia: an electron microscopy study in the rat. J Cereb Blood Flow Metab. 1984 Sep;4(3):350–361. doi: 10.1038/jcbfm.1984.52. [DOI] [PubMed] [Google Scholar]
  14. Smith M. L., Auer R. N., Siesjö B. K. The density and distribution of ischemic brain injury in the rat following 2-10 min of forebrain ischemia. Acta Neuropathol. 1984;64(4):319–332. doi: 10.1007/BF00690397. [DOI] [PubMed] [Google Scholar]
  15. Smith M. L., Bendek G., Dahlgren N., Rosén I., Wieloch T., Siesjö B. K. Models for studying long-term recovery following forebrain ischemia in the rat. 2. A 2-vessel occlusion model. Acta Neurol Scand. 1984 Jun;69(6):385–401. doi: 10.1111/j.1600-0404.1984.tb07822.x. [DOI] [PubMed] [Google Scholar]
  16. Warner D. S., Reasoner D. K., Todd M. M., McAllister A. Secondary hypotensive insults in a rat forebrain ischemia model. Brain Res. 1990 Dec 17;536(1-2):176–182. doi: 10.1016/0006-8993(90)90023-5. [DOI] [PubMed] [Google Scholar]

Articles from International Journal of Experimental Pathology are provided here courtesy of Wiley

RESOURCES