Skip to main content
International Journal of Experimental Pathology logoLink to International Journal of Experimental Pathology
. 1995 Jun;76(3):205–214.

Induction of osteoclast characteristics in cultured avian blood monocytes; modulation by osteoblasts and 1,25-(OH)2 vitamin D3.

R J van't Hof 1, A C Tuinenburg-Bol Raap 1, P J Nijweide 1
PMCID: PMC1997173  PMID: 7547432

Abstract

It has been established, that the osteoclast is derived from the haemopoietic stem cell, but its exact lineage is still controversial. It is sometimes suggested, that osteoclasts and monocytes/macrophages are related cells. It has also been suggested that osteoclast differentiation is regulated by osteoblasts and 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). In the present paper we addressed the question whether avian monocytes can differentiate into osteoclasts in vitro, using an array of immunocytochemical, enzyme cytochemical and function markers. We have also determined the effects of osteoblasts, osteoblast conditioned medium and 1,25-(OH)2D3 on the expression of osteoclastic features on monocytes during culture. Monocytes developed tartrate resistant acid phosphatase (TRAcP) enzyme activity and antigens for all anti-osteoclast antibodies tested, during culture. However, they did not acquire the ability to resorb dentine and still showed phagocytosis of latex spheres. This indicates that the monocytes developed into cells resembling osteoclasts but lacking their function while retaining the function of macrophages. Osteoblast conditioned medium stimulated TRAcP enzyme activity and proliferation of monocytes in cultures. Addition of osteoblasts or osteoblast conditioned medium to monocyte cultures on dentine in the presence or absence of 1,25-(OH)2D3 did not result in the generation of genuine osteoclasts, nor in pit formation. 1,25-(OH)2D3 appeared to be cytotoxic to the avian monocytes in concentrations considered optimal for mouse osteoclast formation. These results suggest that avian monocytes do not readily differentiate into osteoclasts under in vitro conditions that stimulate osteoclast differentiation from bone marrow derived haemopoietic cells. Furthermore, labelling with anti-osteoclast antibodies and TRAcP as osteoclast-markers should be used only with great caution in the identification of osteoclasts formed in vitro.

Full text

PDF
205

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez J. I., Ross F. P., Athanasou N. A., Blair H. C., Greenfield E. M., Teitelbaum S. L. Osteoclast precursors circulate in avian blood. Calcif Tissue Int. 1992 Jul;51(1):48–53. doi: 10.1007/BF00296217. [DOI] [PubMed] [Google Scholar]
  2. Alvarez J. I., Teitelbaum S. L., Blair H. C., Greenfield E. M., Athanasou N. A., Ross F. P. Generation of avian cells resembling osteoclasts from mononuclear phagocytes. Endocrinology. 1991 May;128(5):2324–2335. doi: 10.1210/endo-128-5-2324. [DOI] [PubMed] [Google Scholar]
  3. Arnett T. R., Dempster D. W. Effect of pH on bone resorption by rat osteoclasts in vitro. Endocrinology. 1986 Jul;119(1):119–124. doi: 10.1210/endo-119-1-119. [DOI] [PubMed] [Google Scholar]
  4. Athanasou N. A., Quinn J. Immunophenotypic differences between osteoclasts and macrophage polykaryons: immunohistological distinction and implications for osteoclast ontogeny and function. J Clin Pathol. 1990 Dec;43(12):997–1003. doi: 10.1136/jcp.43.12.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Athanasou N. A., Quinn J., McGee J. O. Immunocytochemical analysis of the human osteoclast: phenotypic relationship to other marrow-derived cells. Bone Miner. 1988 Mar;3(4):317–333. [PubMed] [Google Scholar]
  6. Burger E. H., Van der Meer J. W., van de Gevel J. S., Gribnau J. C., Thesingh G. W., van Furth R. In vitro formation of osteoclasts from long-term cultures of bone marrow mononuclear phagocytes. J Exp Med. 1982 Dec 1;156(6):1604–1614. doi: 10.1084/jem.156.6.1604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chambers T. J., Horton M. A. Failure of cells of the mononuclear phagocyte series to resorb bone. Calcif Tissue Int. 1984 Sep;36(5):556–558. doi: 10.1007/BF02405365. [DOI] [PubMed] [Google Scholar]
  8. Chambers T. J. The cellular basis of bone resorption. Clin Orthop Relat Res. 1980 Sep;(151):283–293. [PubMed] [Google Scholar]
  9. Collin P., Guenther H. L., Fleisch H. Constitutive expression of osteoclast-stimulating activity by normal clonal osteoblast-like cells: effects of parathyroid hormone and 1,25-dihydroxyvitamin D3. Endocrinology. 1992 Sep;131(3):1181–1187. doi: 10.1210/endo.131.3.1505460. [DOI] [PubMed] [Google Scholar]
  10. Davies J., Warwick J., Totty N., Philp R., Helfrich M., Horton M. The osteoclast functional antigen, implicated in the regulation of bone resorption, is biochemically related to the vitronectin receptor. J Cell Biol. 1989 Oct;109(4 Pt 1):1817–1826. doi: 10.1083/jcb.109.4.1817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GOODMAN J. W., HODGSON G. S. Evidence for stem cells in the peripheral blood of mice. Blood. 1962 Jun;19:702–714. [PubMed] [Google Scholar]
  12. Greenfield E. M., Alvarez J. I., McLaurine E. A., Oursler M. J., Blair H. C., Osdoby P., Teitelbaum S. L., Ross F. P. Avian osteoblast conditioned media stimulate bone resorption by targeting multinucleating osteoclast precursors. Calcif Tissue Int. 1992 Oct;51(4):317–323. doi: 10.1007/BF00334494. [DOI] [PubMed] [Google Scholar]
  13. Göthlin G., Ericsson J. L. The osteoclast: review of ultrastructure, origin, and structure-function relationship. Clin Orthop Relat Res. 1976 Oct;(120):201–231. [PubMed] [Google Scholar]
  14. Hagenaars C. E., van der Kraan A. A., Kawilarang-de Haas E. W., Visser J. W., Nijweide P. J. Osteoclast formation from cloned pluripotent hemopoietic stem cells. Bone Miner. 1989 May;6(2):179–189. doi: 10.1016/0169-6009(89)90049-4. [DOI] [PubMed] [Google Scholar]
  15. Hattersley G., Chambers T. J. Generation of osteoclastic function in mouse bone marrow cultures: multinuclearity and tartrate-resistant acid phosphatase are unreliable markers for osteoclastic differentiation. Endocrinology. 1989 Apr;124(4):1689–1696. doi: 10.1210/endo-124-4-1689. [DOI] [PubMed] [Google Scholar]
  16. Hattersley G., Kerby J. A., Chambers T. J. Identification of osteoclast precursors in multilineage hemopoietic colonies. Endocrinology. 1991 Jan;128(1):259–262. doi: 10.1210/endo-128-1-259. [DOI] [PubMed] [Google Scholar]
  17. Hentunen T. A., Tuukkanen J., Vänänen H. K. Osteoclasts and a small population of peripheral blood cells share common surface antigens. Calcif Tissue Int. 1990 Jul;47(1):8–17. doi: 10.1007/BF02555860. [DOI] [PubMed] [Google Scholar]
  18. Horton M. A., Lewis D., McNulty K., Pringle J. A., Chambers T. J. Monoclonal antibodies to osteoclastomas (giant cell bone tumors): definition of osteoclast-specific cellular antigens. Cancer Res. 1985 Nov;45(11 Pt 2):5663–5669. [PubMed] [Google Scholar]
  19. James I. E., Walsh S., Dodds R. A., Gowen M. Production and characterization of osteoclast-selective monoclonal antibodies that distinguish between multinucleated cells derived from different human tissues. J Histochem Cytochem. 1991 Jul;39(7):905–914. doi: 10.1177/39.7.1865107. [DOI] [PubMed] [Google Scholar]
  20. Kerby J. A., Hattersley G., Collins D. A., Chambers T. J. Derivation of osteoclasts from hematopoietic colony-forming cells in culture. J Bone Miner Res. 1992 Mar;7(3):353–362. doi: 10.1002/jbmr.5650070316. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. McSheehy P. M., Chambers T. J. 1,25-Dihydroxyvitamin D3 stimulates rat osteoblastic cells to release a soluble factor that increases osteoclastic bone resorption. J Clin Invest. 1987 Aug;80(2):425–429. doi: 10.1172/JCI113089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Modderman W. E., Tuinenburg-Bol Raap A. C., Nijweide P. J. Tartrate-resistant acid phosphatase is not an exclusive marker for mouse osteoclasts in cell culture. Bone. 1991;12(2):81–87. doi: 10.1016/8756-3282(91)90004-3. [DOI] [PubMed] [Google Scholar]
  24. Nijweide P. J., Vrijheid-Lammers T., Mulder R. J., Blok J. Cell surface antigens on osteoclasts and related cells in the quail studied with monoclonal antibodies. Histochemistry. 1985;83(4):315–324. doi: 10.1007/BF00684377. [DOI] [PubMed] [Google Scholar]
  25. Oursler M. J., Bell L. V., Clevinger B., Osdoby P. Identification of osteoclast-specific monoclonal antibodies. J Cell Biol. 1985 May;100(5):1592–1600. doi: 10.1083/jcb.100.5.1592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Oursler M. J., Osdoby P. Osteoclast development in marrow cultured in calvaria-conditioned media. Dev Biol. 1988 May;127(1):170–178. doi: 10.1016/0012-1606(88)90198-4. [DOI] [PubMed] [Google Scholar]
  27. Perry H. M., 3rd, Gurbani S. Development of monoclonal antibodies to parathyroid hormone-induced resorptive factors from osteoblast-like cells. Calcif Tissue Int. 1992 Mar;50(3):237–244. doi: 10.1007/BF00296288. [DOI] [PubMed] [Google Scholar]
  28. Quinn J. M., McGee J. O., Athanasou N. A. Cellular and hormonal factors influencing monocyte differentiation to osteoclastic bone-resorbing cells. Endocrinology. 1994 Jun;134(6):2416–2423. doi: 10.1210/endo.134.6.8194468. [DOI] [PubMed] [Google Scholar]
  29. Rodan G. A., Martin T. J. Role of osteoblasts in hormonal control of bone resorption--a hypothesis. Calcif Tissue Int. 1981;33(4):349–351. doi: 10.1007/BF02409454. [DOI] [PubMed] [Google Scholar]
  30. Scheven B. A., Visser J. W., Nijweide P. J. In vitro osteoclast generation from different bone marrow fractions, including a highly enriched haematopoietic stem cell population. Nature. 1986 May 1;321(6065):79–81. doi: 10.1038/321079a0. [DOI] [PubMed] [Google Scholar]
  31. Schneider G. B., Relfson M. A bone marrow fraction enriched for granulocyte-macrophage progenitors gives rise to osteoclasts in vitro. Bone. 1988;9(5):303–308. doi: 10.1016/8756-3282(88)90014-2. [DOI] [PubMed] [Google Scholar]
  32. Suda T., Takahashi N., Martin T. J. Modulation of osteoclast differentiation. Endocr Rev. 1992 Feb;13(1):66–80. doi: 10.1210/edrv-13-1-66. [DOI] [PubMed] [Google Scholar]
  33. Takada Y., Kusuda M., Hiura K., Sato T., Mochizuki H., Nagao Y., Tomura M., Yahiro M., Hakeda Y., Kawashima H. A simple method to assess osteoclast-mediated bone resorption using unfractionated bone cells. Bone Miner. 1992 Jun;17(3):347–359. doi: 10.1016/0169-6009(92)90785-c. [DOI] [PubMed] [Google Scholar]
  34. Teti A., Grano M., Colucci S., Cantatore F. P., Loperfido M. C., Zallone A. Z. Osteoblast-osteoclast relationships in bone resorption: osteoblasts enhance osteoclast activity in a serum-free co-culture system. Biochem Biophys Res Commun. 1991 Aug 30;179(1):634–640. doi: 10.1016/0006-291x(91)91419-d. [DOI] [PubMed] [Google Scholar]
  35. Teti A., Volleth G., Carano A., Zambonin Zallone A. The effects of parathyroid hormone or 1,25-dihydroxyvitamin D3 on monocyte-osteoclast fusion. Calcif Tissue Int. 1988 May;42(5):302–308. doi: 10.1007/BF02556364. [DOI] [PubMed] [Google Scholar]
  36. Udagawa N., Takahashi N., Akatsu T., Tanaka H., Sasaki T., Nishihara T., Koga T., Martin T. J., Suda T. Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7260–7264. doi: 10.1073/pnas.87.18.7260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Walker D. G. Osteopetrosis cured by temporary parabiosis. Science. 1973 May 25;180(4088):875–875. doi: 10.1126/science.180.4088.875. [DOI] [PubMed] [Google Scholar]
  38. van der Plas A., Nijweide P. J. Isolation and purification of osteocytes. J Bone Miner Res. 1992 Apr;7(4):389–396. doi: 10.1002/jbmr.5650070406. [DOI] [PubMed] [Google Scholar]

Articles from International Journal of Experimental Pathology are provided here courtesy of Wiley

RESOURCES