Skip to main content
BMC Bioinformatics logoLink to BMC Bioinformatics
. 2007 Aug 17;8:300. doi: 10.1186/1471-2105-8-300

Efficacy of different protein descriptors in predicting protein functional families

Serene AK Ong 1, Hong Huang Lin 1, Yu Zong Chen 1, Ze Rong Li 2, Zhiwei Cao 3,
PMCID: PMC1997217  PMID: 17705863

Abstract

Background

Sequence-derived structural and physicochemical descriptors have frequently been used in machine learning prediction of protein functional families, thus there is a need to comparatively evaluate the effectiveness of these descriptor-sets by using the same method and parameter optimization algorithm, and to examine whether the combined use of these descriptor-sets help to improve predictive performance. Six individual descriptor-sets and four combination-sets were evaluated in support vector machines (SVM) prediction of six protein functional families.

Results

The performance of these descriptor-sets were ranked by Matthews correlation coefficient (MCC), and categorized into two groups based on their performance. While there is no overwhelmingly favourable choice of descriptor-sets, certain trends were found. The combination-sets tend to give slightly but consistently higher MCC values and thus overall best performance such that three out of four combination-sets show slightly better performance compared to one out of six individual descriptor-sets.

Conclusion

Our study suggests that currently used descriptor-sets are generally useful for classifying proteins and the prediction performance may be enhanced by exploring combinations of descriptors.

Background

Sequence-derived structural and physicochemical descriptors have frequently been used in machine learning prediction of protein structural and functional classes [1-5], protein-protein interactions [6-9], subcellular locations [10-16], peptides containing specific properties[17,18], microarray data [19] and protein secondary structure prediction [20]. These descriptors serve to represent and distinguish proteins or peptides of different structural, functional and interaction profiles by exploring their distinguished features in compositions, correlations, and distributions of the constituent amino acids and their structural and physicochemical properties [2,8,21,22]. There is thus a need to comparatively evaluate the effectiveness of these descriptor-sets for predicting different functional problems by using the same machine learning method and parameter optimization algorithm. Moreover, it is of interest to examine whether combined use of these descriptor-sets help to improve predictive performance.

This work is intended to evaluate the effectiveness of a total of six individual descriptor-sets and four combination-sets (Table 1) in the prediction of several protein functional families by using support vector machine (SVM). Six sets of individual descriptors and three combination-sets have been separately utilized in machine learning prediction of different protein functional and structural properties, all of which have shown impressive predictive performances [22-24]. The six individual sets are amino acid compositions [23] (Set D1), dipeptide compositions [24] (Set D2), normalized Moreau-Broto autocorrelation [25,26] (Set D3), Moran autocorrelation [27] (Set D4), Geary autocorrelation [28] (Set D5), and the composition, transition and distribution of structural and physicochemical properties [2-6,8,17,29,30] (Set D6). The three combination-sets are quasi sequence order formed by weighted sums of amino acid compositions and physicochemical coupling correlations [10,11,18,31] (Set D7), pseudo amino acid composition (PseAA) formed by weighted sums of amino acid compositions and physicochemical square correlations [23,32] (Set D8), and combination of amino acid compositions and dipeptide compositions (Set D9) [24,33]. In this work, we also considered a fourth combination-set that combines descriptor-sets D1 through D8 (Set D10).

Table 1.

Protein descriptors commonly used for predicting protein functional families.

Sets Descriptor-sets No. of descriptors (properties) No. of components Type Physicochemical properties Refs
D1 Amino acid composition 1 20 Sequence composition [23]
D2 Dipeptide composition 1 400 Sequence composition [24]
D3 Normalized Moreau – Broto autocorrelation 8 240 Correlation of physicochemical properties Hydrophobicity scale, average flexibility index, polarizability parameter, free energy of amino acid solution in water, residue accessible surface area, amino acid residue volume, steric parameters, relative mutability [25, 26]
D4 Moran autocorrelation 8 240 Correlation of physicochemical properties Hydrophobicity scale, average flexibility index, polarizability parameter, free energy of amino acid solution in water, residue accessible surface area, amino acid residue volume, steric parameters, relative mutability [27]
D5 Geary autocorrelation 8 240 Square correlation of physicochemical properties Hydrophobicity scale, average flexibility index, polarizability parameter, free energy of amino acid solution in water, residue accessible surface area, amino acid residue volume, steric parameters, relative mutability [28]
D6 Descriptors of composition, transition and distribution 21 147 Distribution and variation of physicochemical properties Hydrophobicity, Van der Waals volume, polarity, polarizability, charge, secondary structures, solvent accessibility [2-6, 8, 17, 29, 30]
D7 Quasi sequence order 4 160 Combination of sequence composition and correlation of physicochemical Hydrophobicity, hydrophilicity, polarity, side-chain volume [10, 11, 18, 31]
D8 Pseudo amino acid composition 3 298 Combination of sequence composition and square correlation of physicochemical Hydrophobicity, hydrophilicity, side chain mass [23, 32]
D9 Combination of amino acid and dipeptide composition 2 420 Combination of sequence compositions
D10 Combination of all eight sets of descriptors 54 1745 Combination of all sets

The protein functional families studied here include enzyme EC2.4 [34-37], G protein-coupled receptors [38-40], transporter TC8.A [41], chlorophyll [42], lipid synthesis proteins involved in lipid synthesis [43], and rRNA-binding proteins. These six protein families were selected for testing the descriptor-sets based on their functional diversity, sample size and the range of reported family member prediction accuracies [2]. The reported prediction accuracies for these families are generally lower than those of other families [3], which are ideal for critically evaluating the effectiveness of these descriptor-sets; having a lower accuracy should enable a better differentiation of the performance of the various classes. SVM was used as the machine learning method for predicting these functional families because it is a popular method that has consistently been shown better performances than other machine learning methods [44,45]. As this work is intended as a benchmarking study of the performance of various classes of descriptors, other than automatic optimization of results that is an integral part of the SVM programs, such as sigma value scanning, no further attempt was made to optimize the prediction performance of any descriptor class or of any dataset by manually tuning the parameters. Hence, prediction results reported in this paper might differ from those of reported studies.

EC2.4 includes glycosyltransferases that catalyze the synthesis of glycoconjugates and are involved in post-translational modification of proteins (glycosylation). Increased levels of glycosyltransferases have been found in disease states and inflammation [46,47]. TC8.A consists of auxiliary transport proteins that facilitate transport across membranes, which play regulatory and structural roles [48]. GPCR represents G-protein coupled receptors that transduct signals for inducing cellular responses, and members of GPCR are of great pharmacological importance, as 50–60% of approved drugs elicit their therapeutic effect by selectively addressing members of the GPCR family [49-52]. Chlorophyll proteins are essential for harvesting solar energy in photosynthetic antenna systems [53]. Lipid synthesis proteins play central roles in such processes as metabolism, and deficiencies or altered functioning of lipid binding proteins are associated with disease states such as obesity, diabetes, atherosclerosis, hyperlipidemia and insulin resistance [54]. rRNA-binding proteins play central roles in the post-transcriptional regulation of gene expression [55,56], and their binding capabilities are mediated by certain RNA binding domains and motifs [57-60].

Results and Discussion

The statistics of the six datasets are given in Table 2. Training and prediction statistics for each of the studied descriptor-sets are given in Table 3. Independent validation datasets were used to test the prediction accuracies. Among the 5-fold cross-validation test, independent dataset test and jackknife test, the jackknife is deemed the most rigorous [61]; however, it would have taken a lot of time to use SVM to conduct the jackknife test, thus as a compromise, here we adopted the independent dataset test. The program CDHIT [62-64] was used to remove redundancy at both 90% and 70% sequence identity so to avoid bias, subsequently, the datasets are tested again with the independent evaluation sets and the statistics are given in Table 4. It should be emphasized that the performance evaluation for the studied descriptor-sets are based only on the datasets studied in this work and the conclusions from this study might not be readily extended to other datasets.

Table 2.

Summary of datasets statistics, including size of training, testing and independent evaluation sets, and average sequence length.

Total Training Testing Independent testing Average sequence size
P N P N P N P N

EC2.4 3304 14373 1382 5068 1022 5859 900 3446 460
GPCR 2819 21515 1580 7389 717 7333 522 6793 498
TC8.A 229 23096 94 7962 72 7962 63 7172 483
Chlorophyll 999 22997 356 7928 333 7928 310 7141 480
Lipid 2192 11537 850 5779 707 4483 635 1275 312
rRNA 5855 13770 2004 5246 1940 4953 1911 3571 376

Table 3.

Dataset training statistics and prediction accuracies of six protein functional families. DS refers to descriptor set, where D1 = amino acid composition; D2 = dipeptide composition; D3 = Moreau-Broto autocorrelation; D4 = Moran autocorrelation; D5 = Geary autocorrelation; D6 = composition, transition and distribution descriptors; D7 = quasi sequence order; D8 = pseudo amino acid composition; D9 = combination of D1+D2; and D10 = combination of D1-D8. Predicted results given as TP (true positive), FN (false negative), TN (true negative), FP (false positive), Sen (sensitivity), Spec (specificity), Q (overall accuracy) and MCC (Matthews correlation coefficient).

Protein family Des-criptor set Training set Testing set Independent evaluation set

P N P N P N Q(%) MCC

TP FN TN FP TP FN Sen(%) TN FP Spec(%)
EC2.4 D1 1249 2120 1154 1 9065 12 724 176 80.4 3244 202 94.1 91.3 0.74
D2 1319 2120 1080 5 8806 1 646 154 82.9 3349 97 97.2 94.1 0.80
D3 1105 1756 1295 4 9166 5 768 132 85.3 3394 52 98.5 95.8 0.87
D4 1239 2221 1161 4 8701 5 756 144 84.0 3365 81 97.7 94.8 0.84
D5 1242 2223 1160 2 8690 14 753 147 83.6 3391 55 98.4 95.4 0.85
D6 1214 2077 1145 45 8846 4 741 159 82.3 3383 63 98.2 94.9 0.84
D7 1293 2624 1072 39 8295 8 696 204 77.3 3270 176 94.9 91.3 0.73
D8 1226 3008 1177 1 7918 1 794 106 88.2 3387 59 98.3 96.2 0.88
D9 1275 2747 1129 0 8177 3 782 118 86.9 3367 79 97.7 95.5 0.86
D10 1228 3254 1176 0 7672 1 798 102 88.7 3397 49 98.6 96.5 0.89
GPCR D1 1590 7458 1847 1 14166 3 505 17 96.7 6735 58 99.1 99.0 0.93
D2 564 711 1728 3 14121 5 510 12 97.7 6737 56 99.2 99.1 0.93
D3 1169 4628 1122 4 10208 1 507 15 97.1 6737 56 99.2 99.0 0.93
D4 1257 4474 1037 1 10363 0 499 23 95.6 6745 48 99.3 99.0 0.93
D5 1290 4724 997 8 10113 0 494 28 94.6 6734 59 99.1 98.8 0.91
D6 757 2060 1536 2 12777 0 503 19 96.3 6742 51 99.2 99.0 0.93
D7 812 2950 1482 1 11887 0 495 27 94.8 6696 97 98.6 98.3 0.88
D8 653 2171 1644 0 12550 1 501 21 96.0 6769 24 99.7 99.4 0.95
D9 1590 7458 693 12 7322 57 512 10 98.1 6735 58 99.1 99.1 0.93
D10 672 2454 1625 0 12268 0 502 20 96.2 6757 36 99.5 99.2 0.94
TC8.A D1 118 2858 49 0 13121 0 36 27 57.1 1843 2 99.9 98.5 0.73
D2 116 1100 50 0 14824 0 41 22 65.1 1843 2 99.9 98.7 0.78
D3 94 7962 53 0 14501 0 42 21 66.7 1842 3 98.6 98.7 0.78
D4 94 7962 47 0 11250 0 37 26 58.7 1843 2 99.9 98.5 0.74
D5 94 7962 47 0 11137 0 37 26 58.7 1843 2 99.9 98.5 0.74
D6 94 7962 64 0 15283 0 44 19 69.8 1843 2 99.9 98.9 0.81
D7 94 7962 59 0 15045 0 43 20 68.3 1843 2 99.9 98.9 0.80
D8 103 943 63 0 14981 0 48 15 76.2 1843 2 99.9 99.1 0.85
D9 114 810 52 0 15114 0 41 22 65.1 1843 2 99.9 98.7 0.78
D10 102 1068 64 0 14856 0 48 15 76.2 1843 2 99.9 99.1 0.85
Chlorophyll D1 356 7928 166 0 14297 0 182 128 58.7 1587 11 99.3 92.7 0.71
D2 4S40 934 248 1 7927 1 228 82 73.6 1595 3 99.8 95.6 0.83
D3 425 603 264 0 15253 0 246 64 79.4 1594 4 99.8 96.4 0.86
D4 415 574 273 1 15282 0 247 65 79.7 1597 1 99.9 96.6 0.87
D5 429 615 259 1 15240 1 233 77 75.2 1597 1 99.9 95.9 0.84
D6 482 946 202 5 14910 0 205 105 66.1 1597 1 99.9 94.4 0.79
D7 394 3337 210 85 12517 2 178 132 57.4 1597 1 99.9 93.0 0.73
D8 371 1421 317 1 14435 0 255 55 82.3 1593 5 99.7 96.9 0.88
D9 399 1273 289 1 14582 1 249 61 80.3 1591 7 99.6 96.4 0.86
D10 381 1753 307 1 14102 1 251 59 81.0 1594 4 99.8 96.7 0.88
Lipid synthesis D1 849 2026 705 3 8229 7 470 165 74.0 1218 57 95.5 88.4 0.73
D2 927 2037 629 1 8225 0 512 123 80.6 1259 16 98.6 92.7 0.84
D3 898 2968 659 0 7294 0 509 126 80.2 1271 4 99.7 93.2 0.84
D4 968 3227 588 1 7035 0 493 142 77.6 1273 2 99.8 92.5 0.83
D5 970 3280 586 1 6982 0 491 144 77.3 1260 15 98.8 91.7 0.81
D6 874 2112 681 2 8149 1 525 110 82.7 1268 7 99.5 93.9 0.86
D7 863 2415 692 2 7845 2 512 123 80.6 1271 4 99.7 93.4 0.85
D8 907 1608 615 0 4488 0 498 137 78.4 1268 7 99.5 92.5 0.83
D9 815 1613 740 2 8638 11 525 110 82.7 1248 27 97.9 92.8 0.84
D10 865 1640 657 0 4456 0 531 104 83.6 1268 7 99.5 94.2 0.87
rRNA binding D1 548 579 3390 6 9598 22 1824 87 95.5 3511 60 98.3 97.3 0.94
D2 1133 1225 2811 0 8974 0 1844 67 96.5 3519 52 98.5 97.8 0.95
D3 1126 1638 2816 2 8560 1 1812 99 94.8 3535 36 99.0 97.5 0.95
D4 1337 1958 2697 0 8241 0 1783 128 93.3 3484 87 97.6 96.1 0.91
D5 1372 1976 2572 0 8223 0 1784 127 93.4 3479 92 97.4 96.0 0.91
D6 921 1208 2971 52 8991 0 1824 87 95.5 3541 30 99.2 97.9 0.95
D7 878 2743 3040 26 7442 14 1808 103 97.9 3481 90 97.5 96.5 0.92
D8 810 2245 3143 0 7954 0 1849 62 96.8 3541 30 99.2 98.3 0.96
D9 810 972 3075 3 9182 2 1848 63 96.7 3526 45 98.7 98.0 0.96
D10 900 2600 3044 0 7599 0 1858 53 97.2 3547 24 99.3 98.6 0.97

Table 4.

Dataset statistics and prediction accuracies after homologous sequences removal (HSR) at 90% and 70% identity. DS refers to descriptor set, where D1 = amino acid composition; D2 = dipeptide composition; D3 = Moreau-Broto autocorrelation; D4 = Moran autocorrelation; D5 = Geary autocorrelation; D6 = composition, transition and distribution descriptors; D7 = quasi sequence order; D8 = pseudo amino acid composition; D9 = combination of D1+D2; and D10 = combination of D1-D8. Predicted results given as TP (true positive), FN (false negative), TN (true negative), FP (false positive), Sen (sensitivity), Spec (specificity), Q (overall accuracy) and MCC (Matthews correlation coefficient).

Independent evaluation set

Protein family % HSR DS P N Q (%) MCC

TP FN Sen(%) TN FP Spec(%)
EC2.4 90 D1 552 250 68.8 3235 201 94.2 89.4 0.65
D2 626 176 78.1 3339 97 97.2 93.6 0.78
D3 609 193 75.9 3384 52 98.5 94.2 0.80
D4 603 199 75.2 3355 81 97.6 93.4 0.78
D5 591 211 73.7 3381 55 98.4 93.7 0.79
D6 501 301 62.5 3374 62 98.2 91.4 0.70
D7 545 257 68.0 3261 175 94.9 89.8 0.66
D8 666 136 83.0 3375 61 98.2 95.4 0.84
D9 630 172 78.6 3357 79 97.7 94.1 0.80
D10 670 132 83.5 3388 48 98.6 95.8 0.86
70 D1 459 223 67.3 3193 199 94.1 89.6 0.62
D2 516 166 75.7 3296 96 97.2 93.6 0.76
D3 503 179 73.8 3341 51 98.5 94.4 0.78
D4 495 187 72.6 3311 81 97.6 93.4 0.75
D5 484 198 71.0 3339 53 98.4 93.8 0.77
D6 399 283 58.5 3330 62 98.2 91.5 0.67
D7 452 230 66.3 3218 174 94.9 90.1 0.63
D8 551 131 80.8 3331 61 98.2 95.3 0.83
D9 520 162 76.3 3314 78 97.7 94.1 0.78
D10 554 128 81.2 3344 48 98.6 95.7 0.84

GPCR 90 D1 391 13 96.8 6724 58 99.1 99.0 0.91
D2 395 9 97.8 6744 38 99.4 99.4 0.94
D3 393 11 97.3 6726 56 99.2 99.1 0.92
D4 386 18 95.5 6734 48 99.3 99.1 0.92
D5 381 23 94.3 6723 59 99.1 98.9 0.90
D6 391 13 96.8 6731 51 99.3 99.1 0.92
D7 382 22 94.6 6685 97 98.6 98.3 0.86
D8 387 17 95.8 6758 24 99.7 99.4 0.95
D9 391 13 96.8 6752 30 99.6 99.4 0.94
D10 388 16 96.0 6762 20 99.7 99.5 0.95
70 D1 307 8 97.5 6695 58 99.1 99.1 0.90
D2 309 6 98.1 6715 38 99.4 99.4 0.93
D3 306 9 97.1 6697 56 99.2 99.1 0.90
D4 301 14 95.6 6705 48 99.3 99.1 0.90
D5 198 17 94.6 6694 59 99.1 98.9 0.88
D6 307 8 97.5 6702 51 99.2 99.2 0.91
D7 296 19 94.0 6656 97 98.6 98.4 0.83
D8 301 14 95.6 6729 24 99.6 99.5 0.94
D9 307 8 97.5 6723 30 99.6 99.5 0.94
D10 302 13 95.9 6733 20 99.7 99.5 0.95

TC8.A 90 D1 28 27 50.9 1846 2 99.9 98.5 0.68
D2 33 22 60.0 1846 2 99.9 98.7 0.75
D3 34 21 61.8 1845 3 99.8 98.7 0.75
D4 29 26 52.7 1845 3 99.8 98.8 0.75
D5 29 26 52.7 1845 3 99.8 98.8 0.75
D6 36 19 65.5 1846 2 99.9 98.9 0.78
D7 35 20 63.6 1845 3 99.8 98.8 0.76
D8 40 15 72.7 1845 3 99.8 99.2 0.82
D9 33 22 60.0 1846 2 99.9 98.7 0.75
D10 40 15 72.7 1845 3 99.8 99.2 0.82
70 D1 25 24 51.0 1828 2 99.9 98.6 0.68
D2 29 20 59.2 1828 2 99.9 98.8 0.74
D3 29 20 59.2 1827 3 99.8 98.8 0.73
D4 26 23 53.1 1828 2 99.9 98.7 0.70
D5 26 23 53.1 1828 2 99.9 98.7 0.70
D6 33 16 67.3 1828 2 99.9 99.0 0.79
D7 30 19 61.2 1827 3 99.8 98.8 0.74
D8 36 13 73.5 1827 3 99.8 99.2 0.82
D9 29 20 59.2 1828 2 99.9 98.8 0.74
D10 36 13 73.5 1827 3 99.8 99.2 0.82

Chlorophyll 90 D1 159 127 55.6 1594 8 99.5 92.9 0.70
D2 205 81 71.7 1598 4 99.8 95.5 0.82
D3 224 62 78.3 1599 3 99.8 96.6 0.86
D4 222 64 77.6 1599 3 99.8 96.5 0.86
D5 211 75 73.8 1598 4 99.8 95.8 0.83
D6 182 104 63.6 1594 8 99.5 94.1 0.75
D7 159 127 55.6 1595 9 99.4 92.8 0.69
D8 233 53 81.5 1595 7 99.6 96.8 0.87
D9 224 62 78.3 1594 8 99.5 96.3 0.85
D10 229 57 80.1 1597 5 99.7 96.7 0.87
70 D1 113 118 48.9 1578 8 99.5 93.1 0.65
D2 155 76 67.1 1582 4 99.8 95.6 0.79
D3 171 60 74.0 1583 3 99.8 96.5 0.84
D4 171 60 74.0 1583 3 99.8 96.5 0.84
D5 161 70 69.7 1582 4 99.8 95.9 0.81
D6 137 94 59.3 1578 8 99.5 94.4 0.72
D7 114 117 49.4 1575 11 99.3 93.0 0.64
D8 182 49 78.8 1579 7 99.6 96.9 0.85
D9 172 59 74.5 1578 8 99.5 96.3 0.82
D10 178 53 77.1 1581 5 99.7 96.8 0.85

Lipid synthesis 90 D1 403 149 73.0 1213 59 95.4 88.6 0.72
D2 431 121 78.1 1256 16 98.7 92.5 0.81
D3 436 116 79.0 1268 4 99.7 93.4 0.84
D4 421 131 76.3 1270 2 99.8 92.7 0.83
D5 416 136 75.4 1270 2 99.8 92.4 0.82
D6 449 103 81.3 1270 2 99.8 94.2 0.86
D7 435 117 78.8 1269 3 99.8 93.4 0.84
D8 423 129 76.6 1265 7 99.5 92.5 0.82
D9 449 103 81.3 1245 27 97.9 92.9 0.83
D10 454 98 82.3 1265 7 99.5 94.2 0.86
70 D1 316 138 69.6 1205 59 95.3 88.5 0.69
D2 343 111 75.6 1248 16 98.7 92.6 0.81
D3 340 114 74.9 1260 4 99.7 93.1 0.82
D4 330 124 72.7 1262 2 99.8 92.7 0.81
D5 328 126 72.3 1260 4 99.7 92.4 0.80
D6 358 96 78.9 1244 20 98.4 93.3 0.82
D7 342 112 75.3 1257 7 99.5 93.1 0.82
D8 331 123 72.9 1257 7 99.4 92.4 0.80
D9 360 94 79.3 1237 27 97.9 93.0 0.81
D10 360 94 79.3 1257 7 99.5 94.1 0.85

rRNA binding 90 D1 1407 91 93.9 3502 59 98.3 97.0 0.93
D2 1437 61 95.9 3510 51 98.6 97.8 0.95
D3 1403 95 93.7 3529 32 99.1 97.5 0.93
D4 1347 151 89.9 3491 70 98.0 95.6 0.89
D5 1347 151 89.9 3533 28 99.2 96.5 0.91
D6 1451 47 96.9 3537 24 99.3 98.6 0.97
D7 1358 140 90.7 3429 132 96.3 94.6 0.87
D8 1442 56 96.3 3531 30 99.2 98.3 0.96
D9 1436 62 95.9 3518 43 98.8 97.9 0.95
D10 1449 49 96.7 3537 24 99.3 98.6 0.97
70 D1 924 83 91.8 3454 59 98.3 96.9 0.91
D2 952 55 94.5 3463 50 98.6 97.7 0.93
D3 920 87 91.4 3483 30 99.2 97.4 0.92
D4 907 100 90.1 3444 69 98.0 96.3 0.89
D5 908 99 90.2 3485 28 99.2 97.2 0.92
D6 963 44 95.6 3493 20 99.4 98.6 0.96
D7 917 90 91.1 3382 131 96.3 95.1 0.86
D8 654 53 94.7 3484 29 99.2 98.2 0.95
D9 950 57 94.3 3471 42 98.8 97.8 0.94
D10 960 47 95.3 3490 23 99.4 98.5 0.96

The performance of the ten descriptor-sets were ranked by the Matthews correlation coefficient (MCC) values of the respective SVM prediction of the six functional families, which are given in Table 5. The computed MCC scores for these descriptor-sets are in the range of 0.64~0.97 for all protein families studied. Accordingly, the performance of these descriptor-sets is categorized into two groups based on their MCC values: 'Exceptional' (>0.85) and 'Good' (≤0.85). Moreover, these descriptor-sets are aligned in the order of their MCC values with "=" being of equal values and ">" indicating that one is better than the other. It is noted that, as the differences of many of these MCC values are rather small, such alignment is likely superficial to some extent and may not best reflect the real ranking of performance. Overall, the performances of these descriptor-sets are not significantly different, there is no overwhelmingly preferred descriptor-set, and SVM prediction performance appears to be highly dependent on the dataset.

Table 5.

Descriptor sets ranked and grouped by MCC (Matthews correlation coefficient), before and after removal of homologous sequences at 90% and 70% identity, respectively.

Protein family % HRS* Prediction performance

Exceptional > 0.85 Good = 0.85
EC2.4 NR D10 > D8> D9 > D3 D5 > D4 = D6 > D2 > D1 > D7
90% D10 D8 > D3 = D9 > D5 > D2 = D4 > D6 > D7 > D1
70% D10 > D8 > D3 = D9 > D5 > D2 > D4 > D6 > D7 > D1
GPCR NR D8 > D10 > D1 = D2 = D3 = D4 = D6 = D9 > D5 > D7
90% D8 = D10 > D2 = D9 > D3 = D4 = D6 > D1 > D5 > D7
70% D10 > D8 = D9 > D2 > D6 > D1 = D3 = D4 > D5 D7
TC8.A NR D8 = D10 > D6 > D7 > D2 = D3 = D9 > D4 = D5 > D1
90% D8 = D10 > D6 > D7 > D2 = D3 = D4 = D5 = D9 > D1
70% D8 = D10 > D6 > D2 = D7 = D9 > D3 > D4 = D5 > D1
Chlorophyll NR D8 = D10 > D4 > D3 = D9 D5 > D2 > D6 > D7 > D1
90% D8 = D10 > D3 = D4 D9 > D5 > D2 > D6 > D1 > D7
70% D8 = D10 > D3 = D4 > D9 > D5 > D2 > D6 > D1 > D7
Lipid synthesis NR D10 > D6 D7 > D2 = D3 = D9 > D4 = D8 > D5 > D1
90% D6 = D10 D3 = D7 > D4 = D9 > D5 = D8 > D2 > D1
70% D10 > D3 = D6 = D7 > D2 = D4 = D9 > D5 = D8 > D1
rRNA binding NR D10 > D8 = D9 > D2 = D3 = D6 > D1 > D7> D4 = D5
90% D6 = D10 > D8 > D2 = D9 > D1 = D3 > D5 > D4> D7
70% D6 = D10> D8 > D9 > D2 > D3 = D5 > D1 > D4 > D7

*HSR: homologous sequence removed

NR: (homologous sequences) Not Removed

As shown in Table 3 and Table 4, for many of the studied datasets, the differences in prediction accuracies and MCC values between different descriptor-sets are small. In particular, for GPCR and rRNA binding proteins, the results of almost all descriptor-sets are in the 'Exceptional' category. Examining the range of MCC values of the descriptor-sets for each of the studied protein families (after removal of 70% homologous sequences), the differences between the largest and smallest MCC values are, in order of increasing magnitude: 0.10, 0.12, 0.14, 0.16, 0.21 and 0.21 for rRNA binding proteins, GPCR, TC8.A, lipid synthesis proteins, chlorophyll proteins and EC.2.4 families respectively. Given that a difference of 0.10 and 0.20 in MCC values translates to an approximate 4% and 7% difference in overall prediction accuracy, this separation is not large indeed.

Though the dataset is a more important determinant of prediction performance than the choice of descriptor class, a few general trends could be observed. Three out of four of the combination-sets tend to exhibit slightly but consistently higher MCC values for the protein families studied in this work. These sets are Sets D8, D9 and D10. In contrast, only one out of six individual sets, Set D6, tend to exhibit slightly but consistently higher MCC values for the protein families studied in this work. Therefore, statistically speaking, it appears that the use of combination-sets tend to give slightly better prediction performance than the use of individual-sets.

When each class was examined individually in this study, we find that the combination of amino acid composition and dipeptide composition (Set D9) tends to give consistently better results than that of the individual descriptor-sets (Set D1 and Set D2). It has been reported that one drawback of amino acid composition descriptors is that the same amino acid composition may correspond to diverse sequences as sequence order is lost [24,33]. This sequence order information can be partially covered by considering dipeptide composition (Set D2). On the other hand, dipeptide composition lacks information concerning the fraction of the individual residue in the sequence, thus, a combination-set is expected to give better prediction results [24,33,65,66].

Using all descriptor-sets (Set D10) generally, but not always, gives the best result, which is consistent with the findings on the use of molecular descriptors for predicting compounds of specific properties. [67,68] For instance, Xue et al. found that feature selection methods are capable of reducing the noise generated by the use of overlapping and redundant molecular descriptors, and in some cases, improving the accuracy of SVM classification of pharmacokinetic behaviour of chemical agents [69]. In our study, for example, the three autocorrelation descriptor-sets (Sets D3, D4 and D5) all utilize the same physicochemical properties, only differing in the correlation algorithm. The use of all available descriptors likely results in the inclusion of partially redundant information, some of which may to some extent become noise that interferes with the prediction results or obscures relevant information. Based on the results of previous studies [69], it is possible that feature selection methods may be applied for selecting the optimal set of descriptors to improve prediction accuracy as well as computing efficiency for predicting protein functional families.

Conclusion

The effectiveness of ten protein descriptor-sets in six protein functional family prediction using SVM was evaluated. Corroborating with previous work done on chemical descriptors [67,68,70-76] and protein descriptors [4,21,30,32,35,43,77,78], we found that the descriptor-sets evaluated in this paper, which comprise some of the commonly used descriptors, generally return good results and do not differ significantly. In particular, the use of combination descriptor-sets tends to give slightly better prediction performance than the use of individual descriptor-sets. While there seems to be no preferred descriptor-set that could be utilized for all datasets as prediction results is highly dependent on datasets, the performance of protein classification may be enhanced by selection of optimal combinations of descriptors using established feature-selection methods [79,80]. Incorporation of appropriate sets of physicochemical properties not covered by some of the existing descriptor-sets may also help improving the prediction performance.

Methods

Datasets

The datasets were obtained from SwissProt [81], except for TC8.A, which was downloaded from Transport Classification Database (TCDB) [41]. These datasets were chosen for their functional diversity, sample size and the range of reported family member prediction accuracies. As SVM is essentially a statistical method, the datasets cannot be too small; yet it would also be convenient for the purposes of this study if they were not too large as to be unwieldy computationally. These downloaded datasets were used to construct the positive dataset for the corresponding SVM classification system. A negative dataset, representing non-class members, was generated by a well-established procedure [2,3,21,30] such that all proteins was grouped into domain families [82] in the PFAM database, and the representative proteins of these families unrelated to the protein family being studied were chosen as negative samples.

These proteins, positive and negative, were further divided into separate training, testing and independent evaluation sets by the following procedure: First, proteins were converted into descriptor vectors and then clustered using hierarchical clustering into groups in the structural and physicochemical feature space [83], where more homologous sequences will have shorter distances between them, and the largest separation between clusters was set to a ceiling of 20. One representative protein was randomly selected from each group to form a training set that is sufficiently diverse and broadly distributed in the feature space. Another protein within the group was randomly selected to form the testing set. The selected proteins from each group were further checked to ensure that they are distinguished from the proteins in other groups. The remaining proteins were then designated as the independent evaluation set, also checked to be at a reasonable level of diversity. Fragments, defined as smaller than 60 residues, were discarded. This selection process ensures that the training, testing and evaluation sets constructed are sufficiently diverse and broadly distributed in the feature space. Though an analysis of the 'similar' proteins in each cluster showed that the majority of the proteins in a cluster are quite non-homologous, the program CDHIT (Cluster Database at High Identity with Tolerance) [62-64] was further used after the SVM model was trained to remove redundancy at both 90% and 70% sequence identity, so as to avoid bias as far as possible. CDHIT removes homologous sequences by clustering the protein dataset at some user-defined sequence identity threshold, for example 90%, and then generating a database of only the cluster representatives, thus eliminating sequences with greater than 90% identity. The statistical details are given in Tables 2 and 3.

Algorithms for generating protein descriptors

Ten sets of commonly used composition and physicochemical descriptors were generated from the protein sequence (see Table 1). These descriptors can be computed via the PROFEAT server [22].

Amino acid composition (Set D1) is defined as the fraction of each amino acid type in a sequence

f(r)=NrN, MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGMbGzcqGGOaakcqWGYbGCcqGGPaqkcqGH9aqpdaWcaaqaaiabd6eaonaaBaaaleaacqWGYbGCaeqaaaGcbaGaemOta4eaaiabcYcaSaaa@3703@

where r = 1, 2, ..., 20, Nr is the number of amino acid of type r, and N is the length of the sequence. Dipeptide composition (Set D2) is defined as

fr(r,s)=NrsN1, MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGMbGzcqWGYbGCcqGGOaakcqWGYbGCcqGGSaalcqWGZbWCcqGGPaqkcqGH9aqpdaWcaaqaaiabd6eaonaaBaaaleaacqWGYbGCcqWGZbWCaeqaaaGcbaGaemOta4KaeyOeI0IaeGymaedaaiabcYcaSaaa@3E0B@

where r, s = 1, 2, ..., 20, Nij is the number of dipeptides composed of amino acid types r and s.

Autocorrelation descriptors are a class of topological descriptors, also known as molecular connectivity indices, describe the level of correlation between two objects (protein or peptide sequences) in terms of their specific structural or physicochemical property [84], which are defined based on the distribution of amino acid properties along the sequence [85]. Eight amino acid properties are used for deriving the autocorrelation descriptors: hydrophobicity scale [86]; average flexibility index [87]; polarizability parameter [88]; free energy of amino acid solution in water [88]; residue accessible surface areas [89]; amino acid residue volumes [90]; steric parameters [91]; and relative mutability [92].

These autocorrelation properties are normalized and standardized such that

Pr'=Prp¯σ, MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGqbaudaqhaaWcbaGaemOCaihabaGaei4jaCcaaOGaeyypa0ZaaSaaaeaacqWGqbaudaWgaaWcbaGaemOCaihabeaakiabgkHiTiqbdchaWzaaraaabaacciGae83WdmhaaiabcYcaSaaa@3949@

where P¯ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuWGqbaugaqeaaaa@2DED@ is the average value of a particular property of the 20 amino acids. P¯ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuWGqbaugaqeaaaa@2DED@ and σ are given by

P¯=r=120Pr20, MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuWGqbaugaqeaiabg2da9maalaaabaWaaabCaeaacqWGqbaudaWgaaWcbaGaemOCaihabeaaaeaacqWGYbGCcqGH9aqpcqaIXaqmaeaacqaIYaGmcqaIWaama0GaeyyeIuoaaOqaaiabikdaYiabicdaWaaacqGGSaalaaa@3C09@

and

σ=120r=120(PrP¯)2. MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWFdpWCcqGH9aqpdaGcaaqaamaalaaabaGaeGymaedabaGaeGOmaiJaeGimaadaamaaqahabaGaeiikaGIaemiuaa1aaSbaaSqaaiabdkhaYbqabaGccqGHsislcuWGqbaugaqeaiabcMcaPmaaCaaaleqabaGaeGOmaidaaaqaaiabdkhaYjabg2da9iabigdaXaqaaiabikdaYiabicdaWaqdcqGHris5aaWcbeaakiabc6caUaaa@42AA@

Moreau-Broto autocorrelation descriptors (Set D3) [84,93] are defined as

AC(d)=i=1NdPiPi+d, MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGbbqqcqWGdbWqcqGGOaakcqWGKbazcqGGPaqkcqGH9aqpdaaeWbqaaiabdcfaqnaaBaaaleaacqWGPbqAaeqaaOGaemiuaa1aaSbaaSqaaiabdMgaPjabgUcaRiabdsgaKbqabaaabaGaemyAaKMaeyypa0JaeGymaedabaGaemOta4KaeyOeI0IaemizaqganiabggHiLdGccqGGSaalaaa@4441@

where d = 1, 2, ..., 30 is the lag of the autocorrelation, and Pi and Pi+d are the properties of the amino acid at positions i and i+d respectively. After applying normalization, we get

ATS(d)=AC(d)Nd. MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGbbqqcqWGubavcqWGtbWucqGGOaakcqWGKbazcqGGPaqkcqGH9aqpdaWcaaqaaiabdgeabjabdoeadjabcIcaOiabdsgaKjabcMcaPaqaaiabd6eaojabgkHiTiabdsgaKbaacqGGUaGlaaa@3D94@

Moran autocorrelation descriptors (Set D4) [94] are calculated as

I(d)=1Ndi=1Nd(PiP¯)(Pi+dP¯)1Ni=1N(PiP¯)2, MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGjbqscqGGOaakcqWGKbazcqGGPaqkcqGH9aqpdaWcaaqaamaalaaabaGaeGymaedabaGaemOta4KaeyOeI0IaemizaqgaamaaqahabaGaeiikaGIaemiuaa1aaSbaaSqaaiabdMgaPbqabaGccqGHsislcuWGqbaugaqeaiabcMcaPiabcIcaOiabdcfaqnaaBaaaleaacqWGPbqAcqGHRaWkcqWGKbazaeqaaOGaeyOeI0IafmiuaaLbaebacqGGPaqkaSqaaiabdMgaPjabg2da9iabigdaXaqaaiabd6eaojabgkHiTiabdsgaKbqdcqGHris5aaGcbaWaaSaaaeaacqaIXaqmaeaacqWGobGtaaWaaabCaeaacqGGOaakcqWGqbaudaWgaaWcbaGaemyAaKgabeaakiabgkHiTiqbdcfaqzaaraGaeiykaKYaaWbaaSqabeaacqaIYaGmaaaabaGaemyAaKMaeyypa0JaeGymaedabaGaemOta4eaniabggHiLdaaaOGaeiilaWcaaa@601F@

where d, Pi and Pi+d are defined in the same way as that for Moreau-Broto autocorrelation and P¯ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuWGqbaugaqeaaaa@2DED@ is the average of the considered property P along the sequence:

P¯=i=1NPiN. MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuWGqbaugaqeaiabg2da9maalaaabaWaaabCaeaacqWGqbaudaWgaaWcbaGaemyAaKgabeaaaeaacqWGPbqAcqGH9aqpcqaIXaqmaeaacqWGobGta0GaeyyeIuoaaOqaaiabd6eaobaacqGGUaGlaaa@3A73@

Geary autocorrelation descriptors (Set D5) [95] are written as

C(d)=12(Nd)i=1Nd(PiPi+d)21N1i=1N(PiP¯)2, MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGdbWqcqGGOaakcqWGKbazcqGGPaqkcqGH9aqpdaWcaaqaamaalaaabaGaeGymaedabaGaeGOmaiJaeiikaGIaemOta4KaeyOeI0IaemizaqMaeiykaKcaamaaqahabaGaeiikaGIaemiuaa1aaSbaaSqaaiabdMgaPbqabaGccqGHsislcqWGqbaudaWgaaWcbaGaemyAaKMaey4kaSIaemizaqgabeaakiabcMcaPmaaCaaaleqabaGaeGOmaidaaaqaaiabdMgaPjabg2da9iabigdaXaqaaiabd6eaojabgkHiTiabdsgaKbqdcqGHris5aaGcbaWaaSaaaeaacqaIXaqmaeaacqWGobGtcqGHsislcqaIXaqmaaWaaabCaeaacqGGOaakcqWGqbaudaWgaaWcbaGaemyAaKgabeaakiabgkHiTiqbdcfaqzaaraGaeiykaKYaaWbaaSqabeaacqaIYaGmaaaabaGaemyAaKMaeyypa0JaeGymaedabaGaemOta4eaniabggHiLdaaaOGaeiilaWcaaa@6087@

where d, P¯ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuWGqbaugaqeaaaa@2DED@, Pi and Pi+d are defined as above. Comparing the three autocorrelation descriptors: while Moreau-Broto autocorrelation uses the property values as the basis for measurement, Moran autocorrelation utilizes property deviations from the average values, and Geary utilizes the square-difference of property values instead of vector-products (of property values or deviations). The Moran and Geary autocorrelation descriptors measure spatial autocorrelation, which is the correlation of a variable with itself through space.

The descriptors in Set D6 comprise of the composition (C), transition (T) and distribution (D) features of seven structural or physicochemical properties along a protein or peptide sequence [5,29]. The seven physicochemical properties [2,5,29] are hydrophobicity; normalized Van der Waals volume; polarity; polarizibility; charge; secondary structures; and solvent accessibility. For each of these properties, the amino acids are divided into three groups such that those in a particular group are regarded to have approximately the same property. For instance, residues can be divided into hydrophobic (CVLIMFW), neutral (GASTPHY), and polar (RKEDQN) groups. C is defined as the number of residues with that particular property divided by the total number of residues in a protein sequence. T characterizes the percent frequency with which residues with a particular property is followed by residues of a different property. D measures the chain length within which the first, 25%, 50%, 75% and 100% of the amino acids with a particular property are located respectively. There are 21 elements representing these three descriptors: 3 for C, 3 for T and 15 for D, and the protein feature vector is constructed by sequentially combining the 21 elements for all of these properties and the 20 residues, resulting in a total of 188 dimensions.

The quasi-sequence order descriptors (Set D7) [96] are derived from both the Schneider-Wrede physicochemical distance matrix [10,18,97] and the Grantham chemical distance matrix [31], between each pair of the 20 amino acids. The physicochemical properties computed include hydrophobicity, hydrophilicity, polarity, and side-chain volume. Similar to the descriptors in Set D6, sequence order descriptors can also be used for representing amino acid distribution patterns of a specific physicochemical property along a protein or peptide sequence [18,31]. For a protein chain of N amino acid residues R1R2...RN, the sequence order effect can be approximately reflected through a set of sequence order coupling numbers

τd=i=1Nd(di,i+d)2, MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWFepaDdaWgaaWcbaGaemizaqgabeaakiabg2da9maaqahabaGaeiikaGIaemizaq2aaSbaaSqaaiabdMgaPjabcYcaSiabdMgaPjabgUcaRiabdsgaKbqabaGccqGGPaqkdaahaaWcbeqaaiabikdaYaaaaeaacqWGPbqAcqGH9aqpcqaIXaqmaeaacqWGobGtcqGHsislcqWGKbaza0GaeyyeIuoakiabcYcaSaaa@44FB@

where τd is the dth rank sequence order coupling number (d = 1, 2, ..., 30) that reflects the coupling mode between all of the most contiguous residues along a protein sequence, and di,i+d is the distance between the two amino acids at position i and i+d. For each amino acid type, the type 1 quasi sequence order descriptor can be defined as

Xr=frr=120fr+wd=130τd, MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGybawdaWgaaWcbaGaemOCaihabeaakiabg2da9maalaaabaGaemOzay2aaSbaaSqaaiabdkhaYbqabaaakeaadaaeWbqaaiabdAgaMnaaBaaaleaacqWGYbGCaeqaaOGaey4kaSIaem4DaC3aaabCaeaaiiGacqWFepaDdaWgaaWcbaGaemizaqgabeaaaeaacqWGKbazcqGH9aqpcqaIXaqmaeaacqaIZaWmcqaIWaama0GaeyyeIuoaaSqaaiabdkhaYjabg2da9iabigdaXaqaaiabikdaYiabicdaWaqdcqGHris5aaaakiabcYcaSaaa@4BFF@

where r = 1, 2, ..., 20, fr is the normalized occurrence of amino acid type i and w is a weighting factor (w = 0.1). The type 2 quasi sequence order is defined as

Xd=wτd20r=120fr+wd=130τd, MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGybawdaWgaaWcbaGaemizaqgabeaakiabg2da9maalaaabaGaem4DaChcciGae8hXdq3aaSbaaSqaaiabdsgaKjabgkHiTiabikdaYiabicdaWaqabaaakeaadaaeWbqaaiabdAgaMnaaBaaaleaacqWGYbGCaeqaaOGaey4kaSIaem4DaC3aaabCaeaacqWFepaDdaWgaaWcbaGaemizaqgabeaaaeaacqWGKbazcqGH9aqpcqaIXaqmaeaacqaIZaWmcqaIWaama0GaeyyeIuoaaSqaaiabdkhaYjabg2da9iabigdaXaqaaiabikdaYiabicdaWaqdcqGHris5aaaakiabcYcaSaaa@5076@

where d = 21, 22, ..., 50. The combination of these two equations gives us a vector that describes a protein: the first 20 components reflect the effect of the amino acid composition, while the components from 21 to 50 reflect the effect of sequence order.

Similar to the quasi-sequence order descriptor, the pseudo amino acid descriptor (Set D8) is made up of a 50-dimensional vector in which the first 20 components reflect the effect of the amino acid composition and the remaining 30 components reflect the effect of sequence order, only now, the coupling number τd is now replaced by the sequence order correlation factor θλ [32]. The set of sequence order correlated factors is defined as follows:

θλ=1Nλi=1LλΘ(Ri,Ri+λ), MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWF4oqCdaWgaaWcbaGae83UdWgabeaakiabg2da9maalaaabaGaeGymaedabaGaemOta4KaeyOeI0Iae83UdWgaamaaqahabaGaeuiMdeLaeiikaGIaemOuai1aaSbaaSqaaiabdMgaPbqabaGccqGGSaalcqWGsbGudaWgaaWcbaGaemyAaKMaey4kaSIae83UdWgabeaakiabcMcaPaWcbaGaemyAaKMaeyypa0JaeGymaedabaGaemitaWKaeyOeI0Iae83UdWganiabggHiLdGccqGGSaalaaa@4C65@

where θλ is the first-tier correlation factor that reflects the sequence order correlation between all of the λ-most contiguous resides along a protein chain (λ = 1,...30) and N is the number of amino acid residues. Θ(Ri, Rj) is the correlation factor and is given by

Θ(Ri,Rj)=13{[H1(Rj)H1(Ri)]2+[H2(Rj)H2(Ri)]2+[M(Rj)M(Ri)]2}, MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqqHyoqucqGGOaakcqWGsbGudaWgaaWcbaGaemyAaKgabeaakiabcYcaSiabdkfasnaaBaaaleaacqWGQbGAaeqaaOGaeiykaKIaeyypa0ZaaSaaaeaacqaIXaqmaeaacqaIZaWmaaWaaiWaaeaadaWadaqaaiabdIeainaaBaaaleaacqaIXaqmaeqaaOGaeiikaGIaemOuai1aaSbaaSqaaiabdQgaQbqabaGccqGGPaqkcqGHsislcqWGibasdaWgaaWcbaGaeGymaedabeaakiabcIcaOiabdkfasnaaBaaaleaacqWGPbqAaeqaaOGaeiykaKcacaGLBbGaayzxaaWaaWbaaSqabeaacqaIYaGmaaGccqGHRaWkdaWadaqaaiabdIeainaaBaaaleaacqaIYaGmaeqaaOGaeiikaGIaemOuai1aaSbaaSqaaiabdQgaQbqabaGccqGGPaqkcqGHsislcqWGibasdaWgaaWcbaGaeGOmaidabeaakiabcIcaOiabdkfasnaaBaaaleaacqWGPbqAaeqaaOGaeiykaKcacaGLBbGaayzxaaWaaWbaaSqabeaacqaIYaGmaaGccqGHRaWkdaWadaqaaiabd2eanjabcIcaOiabdkfasnaaBaaaleaacqWGQbGAaeqaaOGaeiykaKIaeyOeI0Iaemyta0KaeiikaGIaemOuai1aaSbaaSqaaiabdMgaPbqabaGccqGGPaqkaiaawUfacaGLDbaadaahaaWcbeqaaiabikdaYaaaaOGaay5Eaiaaw2haaiabcYcaSaaa@7006@

where H1(Ri), H2(Ri) and M(Ri) are the hydrophobicity [98], hydrophilicity [99] and side-chain mass of amino acid Ri, respectively. Before being substituted in the above equation, the various physicochemical properties P(i) are subjected to a standard conversion,

P(i)=P0(i)i=120P0(i)20i=120[P0(i)i=120P0(i)20]220 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGqbaucqGGOaakcqWGPbqAcqGGPaqkcqGH9aqpdaWcaaqaaiabdcfaqnaaCaaaleqabaGaeGimaadaaOGaeiikaGIaemyAaKMaeiykaKIaeyOeI0YaaabCaeaadaWcaaqaaiabdcfaqnaaCaaaleqabaGaeGimaadaaOGaeiikaGIaemyAaKMaeiykaKcabaGaeGOmaiJaeGimaadaaaWcbaGaemyAaKMaeyypa0JaeGymaedabaGaeGOmaiJaeGimaadaniabggHiLdaakeaadaGcaaqaamaalaaabaWaaabCaeaadaWadaqaaiabdcfaqnaaCaaaleqabaGaeGimaadaaOGaeiikaGIaemyAaKMaeiykaKIaeyOeI0YaaabCaeaadaWcaaqaaiabdcfaqnaaCaaaleqabaGaeGimaadaaOGaeiikaGIaemyAaKMaeiykaKcabaGaeGOmaiJaeGimaadaaaWcbaGaemyAaKMaeyypa0JaeGymaedabaGaeGOmaiJaeGimaadaniabggHiLdaakiaawUfacaGLDbaaaSqaaiabdMgaPjabg2da9iabigdaXaqaaiabikdaYiabicdaWaqdcqGHris5aOWaaWbaaSqabeaacqaIYaGmaaaakeaacqaIYaGmcqaIWaamaaaaleqaaaaaaaa@68BB@

This sequence order correlation definition [Eqs. (14), (15)] introduce more correlation factors of physicochemical effects as compared to the coupling number [Eq. (11)], and has shown to be an improvement on the way sequence order effect information is represented [32,35,100]. Thus, for each amino acid type, the first part of the vector is defined as

Xr=frr=120fr+wd=130θj, MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGybawdaWgaaWcbaGaemOCaihabeaakiabg2da9maalaaabaGaemOzay2aaSbaaSqaaiabdkhaYbqabaaakeaadaaeWbqaaiabdAgaMnaaBaaaleaacqWGYbGCaeqaaOGaey4kaSIaem4DaC3aaabCaeaaiiGacqWF4oqCdaWgaaWcbaGaemOAaOgabeaaaeaacqWGKbazcqGH9aqpcqaIXaqmaeaacqaIZaWmcqaIWaama0GaeyyeIuoaaSqaaiabdkhaYjabg2da9iabigdaXaqaaiabikdaYiabicdaWaqdcqGHris5aaaakiabcYcaSaaa@4BFC@

where r = 1, 2, ..., 20, fr is the normalized occurrence of amino acid type i and w is a weighting factor (w = 0.1), and the second part is defined as

Xd=wθd20r=120fr+wd=130ϑλ. MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGybawdaWgaaWcbaGaemizaqgabeaakiabg2da9maalaaabaGaem4DaChcciGae8hUde3aaSbaaSqaaiabdsgaKjabgkHiTiabikdaYiabicdaWaqabaaakeaadaaeWbqaaiabdAgaMnaaBaaaleaacqWGYbGCaeqaaOGaey4kaSIaem4DaC3aaabCaeaacqWFrpGsdaWgaaWcbaGae83UdWgabeaaaeaacqWGKbazcqGH9aqpcqaIXaqmaeaacqaIZaWmcqaIWaama0GaeyyeIuoaaSqaaiabdkhaYjabg2da9iabigdaXaqaaiabikdaYiabicdaWaqdcqGHris5aaaakiabc6caUaaa@50AC@

Support Vector Machines (SVM)

As the SVM algorithms have been extensively described in the literature [2,3,101], only a brief description is given here. In the case of a linear SVM, a hyperplane that separates two different classes of feature vectors with a maximum margin is constructed. One class represents positive samples, for example EC2.4 proteins, and the other the negative samples. This hyperplane is constructed by finding a vector w and a parameter b that minimizes ||w||2 that satisfies the following conditions: w·xi + b ≥ 1, for yi = 1 (positive class) and w·xi + b ≤ -1, for yi = -1 (negative class). Here xi is a feature vector, yi is the group index, w is a vector normal to the hyperplane, |b|||w|| MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaWcaaqaaiabcYha8jabdkgaIjabcYha8bqaaiabcYha8jabcYha8jabhEha3jabcYha8jabcYha8baaaaa@3884@ is the perpendicular distance from the hyperplane to the origin, and ||w||2 is the Euclidean norm of w. In the case of a nonlinear SVM, feature vectors are projected into a high dimensional feature space by using a kernel function such as K(xi,xj)=exixj2/2σ2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGlbWscqGGOaakcqWH4baEdaWgaaWcbaGaemyAaKgabeaakiabcYcaSiabhIha4naaBaaaleaacqWGQbGAaeqaaOGaeiykaKIaeyypa0Jaemyzau2aaWbaaSqabeaacqGHsisldaqbdaqaaiabhIha4naaBaaameaacqWGPbqAaeqaaSGaeyOeI0IaeCiEaG3aaSbaaWqaaiabdQgaQbqabaaaliaawMa7caGLkWoadaahaaadbeqaaiabikdaYaaaliabc+caViabikdaYGGaciab=n8aZnaaCaaameqabaGaeGOmaidaaaaaaaa@4A11@. The linear SVM procedure is then applied to the feature vectors in this feature space. After the determination of w and b, a given vector x can be classified by using sign [(w.x) + b], a positive or negative value indicating that the vector x belongs to the positive or negative class respectively.

As a discriminative method, the performance of SVM classification can be accessed by measuring the true positive TP (correctly predicted positive samples), false negative FN (positive samples incorrectly predicted as negative), true negative TN (correctly predicted negative samples), and false positive FP (negative samples incorrectly predicted as positive) [4,102,103]. As the numbers of positive and negative samples are imbalanced, the positive prediction accuracy or sensitivity Qp = TP/(TP+FN) and negative prediction accuracy or specificity Qn = TN/(TN+FP) [101] are also introduced. The overall accuracy is defined as Q = (TP+TN)/(TP+FN+TN+FP). However, in some cases, Q, Qp, and Qnare insufficient to provide a complete assessment of the performance of a discriminative method [102,104]. Thus the Matthews correlation coefficient (MCC) was used in this work to evaluate the randomness of the prediction:

MCC=TP×TNFP×FN(TP+FN)(TP+FP)(TN+FP)(TN+FN), MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGnbqtcqWGdbWqcqWGdbWqcqGH9aqpdaWcaaqaaiabdsfaujabdcfaqjabgEna0kabdsfaujabd6eaojabgkHiTiabdAeagjabdcfaqjabgEna0kabdAeagjabd6eaobqaamaakaaabaGaeiikaGIaemivaqLaemiuaaLaey4kaSIaemOrayKaemOta4KaeiykaKIaeiikaGIaemivaqLaemiuaaLaey4kaSIaemOrayKaemiuaaLaeiykaKIaeiikaGIaemivaqLaemOta4Kaey4kaSIaemOrayKaemiuaaLaeiykaKIaeiikaGIaemivaqLaemOta4Kaey4kaSIaemOrayKaemOta4KaeiykaKcaleqaaaaakiabcYcaSaaa@5CEB@

where MCC ∈ [-1,1], with a negative value indicating disagreement of the prediction and a positive value indicating agreement. A zero value means the prediction is completely random. The MCC utilizes all four basic elements of the accuracy and it provides a better summary of the prediction performance than the overall accuracy.

Authors' contributions

SAK generated the datasets, carried out the calculations and drafted the manuscript, HH generated the datasets and participated in the design of the study, ZR updated the descriptor generation program to calculate PseAA descriptors (ZR wrote the original descriptor generation program, introduced in previous works), YZ conceived of the study and corrected the manuscript, and YZ and ZW oversaw the design and coordination of this work and provided invaluable advice. All authors read and approved the final manuscript.

Contributor Information

Serene AK Ong, Email: renese7@gmail.com.

Hong Huang Lin, Email: g0301167@nus.edu.sg.

Yu Zong Chen, Email: phacyz@nus.edu.sg.

Ze Rong Li, Email: lilaojiu@yahoo.com.

Zhiwei Cao, Email: zwcao@scbit.org.

References

  1. Karchin R, Karplus K, Haussler D. Classifying G-protein coupled receptors with support vector machines. Bioinformatics. 2002;18:147–159. doi: 10.1093/bioinformatics/18.1.147. [DOI] [PubMed] [Google Scholar]
  2. Cai CZ, Han LY, Ji ZL, Chen X, Chen YZ. SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence. Nuclei Acid Res. 2003;31:3692–3697. doi: 10.1093/nar/gkg600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cai CZ, Han LY, Ji ZL, Chen YZ. Enzyme family classification by support vector machines. Proteins. 2004;55:66–76. doi: 10.1002/prot.20045. [DOI] [PubMed] [Google Scholar]
  4. Han LY, Cai CZ, Lo SL, Chung MC, Chen YZ. Prediction of RNA-binding proteins from primary sequence by a support vector machine approach . RNA. 2004;10:355–368. doi: 10.1261/rna.5890304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dubchak I, Muchnick I. Mayor C, Dralyuk I, Kim SH. Recognition of a protein fold in the context of the Structural Classification of Proteins (SCOP) classification. Proteins. 1999;35:401–407. doi: 10.1002/(SICI)1097-0134(19990601)35:4<401::AID-PROT3>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  6. Bock JR, Gough DA. Predicting protein--protein interactions from primary structure. Bioinformatics. 2001;17:455–460. doi: 10.1093/bioinformatics/17.5.455. [DOI] [PubMed] [Google Scholar]
  7. Bock JR, Gough DA. Whole-proteome interaction mining . Bioinformatics. 2003;19:125–134. doi: 10.1093/bioinformatics/19.1.125. [DOI] [PubMed] [Google Scholar]
  8. Lo SL, Cai CZ, Chen YZ, Chung MC. Effect of training datasets on support vector machine prediction of protein-protein interactions. Proteomics. 2005;5:876–884. doi: 10.1002/pmic.200401118. [DOI] [PubMed] [Google Scholar]
  9. Chou KC, Cai YD. Predicting protein-protein interactions from sequences in a hybridization space. J Proteome Res. 2006;5:316–322. doi: 10.1021/pr050331g. [DOI] [PubMed] [Google Scholar]
  10. Chou KC. Prediction of protein subcellular locations by incorporating quasi-sequence-order effect. Biochem Biophys Res Commun. 2000;278:477–483. doi: 10.1006/bbrc.2000.3815. [DOI] [PubMed] [Google Scholar]
  11. Chou KC, Cai YD. Prediction of protein subcellular locations by GO-FunD-PseAA predictor. Biochem Biophys Res Commun. 2004;320:1236–1239. doi: 10.1016/j.bbrc.2004.06.073. [DOI] [PubMed] [Google Scholar]
  12. Chou KC, Shen HB. Hum-PLoc: A novel ensemble classifier for predicting human protein subcellular localization. Biochem Biophys Res Commun. 2006;347:150–157. doi: 10.1016/j.bbrc.2006.06.059. [DOI] [PubMed] [Google Scholar]
  13. Chou KC, Shen HB. Large-scale plant protein subcellular location prediction. J Cell Biochem. 2006;100:665–678. doi: 10.1002/jcb.21096. [DOI] [PubMed] [Google Scholar]
  14. Bhasin M, Garg A, Raghava GP. PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics. 2005;21:2522–2524. doi: 10.1093/bioinformatics/bti309. [DOI] [PubMed] [Google Scholar]
  15. Guo J, Lin Y, Liu XJ. GNBSL: a new integrative system to predict the subcellular location for Gram-negative bacteria proteins. Proteomics. 2006;6:5099–5105. doi: 10.1002/pmic.200600064. [DOI] [PubMed] [Google Scholar]
  16. Guo J, Lin Y. TSSub: eukaryotic protein subcellular localization by extracting features from profiles. Bioinformatics. 2006;22:1784–1785. doi: 10.1093/bioinformatics/btl180. [DOI] [PubMed] [Google Scholar]
  17. Cui J, Han LY, Lin HH, Zhang HL, Tang ZQ, Zheng CJ, Cao ZW, Chen YZ. Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical properties. Mol Immunol. 2007;44:866–877. doi: 10.1016/j.molimm.2006.04.001. [DOI] [PubMed] [Google Scholar]
  18. Schneider G, Wrede P. The rational design of amino acid sequences by artificial neural networks and simulated molecular evolution: de novo design of an idealized leader peptidase cleavage site. Biophys J. 1994;66:355–344. doi: 10.1016/s0006-3495(94)80782-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, Ares MJ, Jr, Haussler D. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci USA. 2000;97:262–267. doi: 10.1073/pnas.97.1.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ward JJ, McGuffin LJ, Buxton BF, Jones DT. Secondary structure prediction with support vector machines . Bioinformatics. 2003;19:1650–1655. doi: 10.1093/bioinformatics/btg223. [DOI] [PubMed] [Google Scholar]
  21. Han LY, Cai CZ, Ji ZL, Cao ZW, Cui J, Chen YZ. Predicting functional family of novel enzymes irrespective of sequence similarity: a statistical learning approach. Nuclei Acid Res. 2004;32:6437–6444. doi: 10.1093/nar/gkh984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Li ZR, Lin HH, Han LY, Jiang L, Chen X, Chen YZ. PROFEAT: A web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nuclei Acid Res. 2006;34:W32–37. doi: 10.1093/nar/gkl305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Chou KC, Cai YD. Prediction of membrane protein types by incorporating amphipathic effects. J Chem Inf Model. 2005;45:407–413. doi: 10.1021/ci049686v. [DOI] [PubMed] [Google Scholar]
  24. Gao QB, Wang ZZ, Yan C, Du YH. Prediction of protein subcellular location using a combined feature of sequence. FEBS Lett. 2005;579:3444–3448. doi: 10.1016/j.febslet.2005.05.021. [DOI] [PubMed] [Google Scholar]
  25. Feng ZP, Zhang CT. Prediction of membrane protein types based on the hydrophobic index of amino acids. J Protein Chem. 2000;19:262–275. doi: 10.1023/A:1007091128394. [DOI] [PubMed] [Google Scholar]
  26. Lin Z, Pan XM. Accurate prediction of protein secondary structural content. J Protein Chem. 2001;20:217–220. doi: 10.1023/A:1010967008838. [DOI] [PubMed] [Google Scholar]
  27. Horne DS. Prediction of protein helix content from an autocorrelation analysis of sequence hydrophobicities. Biopolymers. 1988;27:451–477. doi: 10.1002/bip.360270308. [DOI] [PubMed] [Google Scholar]
  28. Sokal RR, Thomson BA. Population structure inferred by local spatial autocorrelation: an example from an Amerindian tribal population. Am J Phys Anthropol. 2006;129:121–131. doi: 10.1002/ajpa.20250. [DOI] [PubMed] [Google Scholar]
  29. Dubchak I, I M, Holbrook SR, Kim SH. Prediction of protein folding class using global description of amino acid sequence. Proc Natl Acad Sci USA. 1995;92:8700–8704. doi: 10.1073/pnas.92.19.8700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lin HH, Han LY, Cai CZ, Ji ZL, Chen YZ. Prediction of transporter family from protein sequence by support vector machine approach. Proteins. 2006;62:218–231. doi: 10.1002/prot.20605. [DOI] [PubMed] [Google Scholar]
  31. Grantham R. Amino acid difference formula to help explain protein evolution. Science. 1974;185:862–864. doi: 10.1126/science.185.4154.862. [DOI] [PubMed] [Google Scholar]
  32. Chou KC. Prediction of protein cellular attributes using pseudo amino acid composition. Proteins: Structure Function and Genetics. 2001;43:246–255. doi: 10.1002/prot.1035. [DOI] [PubMed] [Google Scholar]
  33. Bhasin M, Raghava GP. Classification of nuclear receptors based on amino acid composition and dipeptide composition. J Biol Chem. 2004;279:23262–23266. doi: 10.1074/jbc.M401932200. [DOI] [PubMed] [Google Scholar]
  34. NC-IUBMB . Enzyme Nomenclature. San Diego, California , Academic Press; 1992. [Google Scholar]
  35. Chou KC. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics. 2005;21:10–19. doi: 10.1093/bioinformatics/bth466. [DOI] [PubMed] [Google Scholar]
  36. Chou KC, Cai YD. Predicting enzyme family class in a hybridization space. Protein Sci. 2004;13:2857–2863. doi: 10.1110/ps.04981104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Chou KC, Elrod DW. Prediction of enzyme family classes. J Proteome Res. 2003;2:183–190. doi: 10.1021/pr0255710. [DOI] [PubMed] [Google Scholar]
  38. Chou KC. Prediction of G-protein-coupled receptor classes. J Proteome Res. 2005;4:1413–1418. doi: 10.1021/pr050087t. [DOI] [PubMed] [Google Scholar]
  39. Chou KC, Elrod DW. Bioinformatical analysis of G-protein-coupled receptors. J Proteome Res. 2002;1:429–433. doi: 10.1021/pr025527k. [DOI] [PubMed] [Google Scholar]
  40. Bhasin M, Raghava GP. GPCRpred: an SVM-based method for prediction of families and subfamilies of G-protein coupled receptors. Nuclei Acid Res. 2004;32:W383–389. doi: 10.1093/nar/gkh416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Saier MHJ, Tran CV, Barabote RD. Nuclei Acid Res. Vol. 34. Saier Lab Bioinformatics Group; 2006. TCDB: the Transporter Classification Database for membrane transport protein analyses and information; pp. D181–D186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Suzuki JY, Bollivar DW, Bauer CE. Genetic analysis of chlorophyll biosynthesis. Annu Rev Genet. 1997;31:61–89. doi: 10.1146/annurev.genet.31.1.61. [DOI] [PubMed] [Google Scholar]
  43. Lin HH, Han LY, Zhang HL, Zheng CJ, Xie B, Chen YZ. Prediction of the functional class of lipid binding proteins from sequence-derived properties irrespective of sequence similarity. J Lipid Res. 2006;47:824–831. doi: 10.1194/jlr.M500530-JLR200. [DOI] [PubMed] [Google Scholar]
  44. Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, Ares MJ, Haussler D. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci USA. 2000;97:262–267. doi: 10.1073/pnas.97.1.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Burbidge R, Trotter M, Buxton B, Holden S. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem. 2001;26:5–14. doi: 10.1016/S0097-8485(01)00094-8. [DOI] [PubMed] [Google Scholar]
  46. Baenzigner JU. Protein-specific glycosyltransferase: how and why they do it! FASEB J. 1994;8:1019–1025. doi: 10.1096/fasebj.8.13.7926366. [DOI] [PubMed] [Google Scholar]
  47. Kapitonov D, Yu RK. Conserved domains of glycosyltransferase. Glycobiology. 1999;9:961–978. doi: 10.1093/glycob/9.10.961. [DOI] [PubMed] [Google Scholar]
  48. Busch W, Saier MHJ. The Transporter Classification (TC) system . Crit Rev Biochem Mol Biol. 2002;37:287–337. doi: 10.1080/10409230290771528. [DOI] [PubMed] [Google Scholar]
  49. Drews J. Genomic sciences and the medicine of tomorrow. Nat Biotechnol. 1996;14:1516–1518. doi: 10.1038/nbt1196-1516. [DOI] [PubMed] [Google Scholar]
  50. Gudermann TB, Nurnberg B, Schultz G. Receptors and G proteins as primary components of transmembrane signal transduction. Part 1. G-protein-coupled receptors: structure and function. J Mol Med. 1995;73:51–63. doi: 10.1007/BF00270578. [DOI] [PubMed] [Google Scholar]
  51. Muller G. Towards 3D structures of G protein-coupled receptors: a multidisciplinary approach. Curr Med Chem. 2000;7:861–888. doi: 10.2174/0929867003374534. [DOI] [PubMed] [Google Scholar]
  52. Paulson JC, Colley KJ. Glycosyltransferase. J Biol Chem. 1989;264:17645–17618. [PubMed] [Google Scholar]
  53. Beale SI, Weinstein JD. Biochemistry and regulation of photosynthetic pigment formation in plants and algae. In: Jordan PM, editor. Biosynthesis of Tetrapyrroles. Amsterdam , Elsevier; 1991. pp. 155–235. [Google Scholar]
  54. Glatz JF, Luiken JJ, van Bilsen M, van der Vusse GJ. Cellular lipid binding proteins as facilitators and regulators of lipid metabolism. . Mol Cell Biochem. 2002;239:3–7. doi: 10.1023/A:1020529918782. [DOI] [PubMed] [Google Scholar]
  55. Burd CG, Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins . Science. 1994;265:615–621. doi: 10.1126/science.8036511. [DOI] [PubMed] [Google Scholar]
  56. Kiledjian M, Burd CG, Portman DS, Gorlach M, Dreyfuss G. Structure and function of hnRNP proteins. In: Nagai K, Mattaj IW, editor. RNA-Protein Interactions: Frontiers in Molecular Biology. Oxford , IRL Press; 1994. pp. 127–149. [Google Scholar]
  57. Draper DE. Themes in RNA-protein recognition. J Mol Biol. 1999;293:255–270. doi: 10.1006/jmbi.1999.2991. [DOI] [PubMed] [Google Scholar]
  58. Fierro-Monti I, Mathews MB. Proteins binding to duplexed RNA: one motif, multiple functions. Trends Biochem Sci. 2000;25:241–246. doi: 10.1016/S0968-0004(00)01580-2. [DOI] [PubMed] [Google Scholar]
  59. Perculis BA. RNA-binding proteins: If it looks like a sn(o)RNA. Curr Biol. 2000;10:R916–R918. doi: 10.1016/S0960-9822(00)00851-4. [DOI] [PubMed] [Google Scholar]
  60. Perez-Canadillas JM, Varani G. Recent advances in RNA-protein recognition. Curr Opin Struct Biol. 2001;11:53–58. doi: 10.1016/S0959-440X(00)00164-0. [DOI] [PubMed] [Google Scholar]
  61. Chou KC, Zhang CT. Prediction of protein structural classes. Crit Rev Biochem Mol Biol. 1995;30:275–349. doi: 10.3109/10409239509083488. [DOI] [PubMed] [Google Scholar]
  62. Li WZ, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of proteins or nucleotide sequences. Bioinformatics. 2006;22:1658–1659. doi: 10.1093/bioinformatics/btl158. [DOI] [PubMed] [Google Scholar]
  63. Li WZ, Jaroszewksi L, Godzik A. Clustering of highly homologous sequences to reduce the size of large protein database. Bioinformatics. 2001;17:282–283. doi: 10.1093/bioinformatics/17.3.282. [DOI] [PubMed] [Google Scholar]
  64. Li WZ, Jaroszewksi L, Godzik A. Tolerating some redundancy significantly speeds up clustering of large protein databases. Bioinformatics. 2002;18:77–82. doi: 10.1093/bioinformatics/18.1.77. [DOI] [PubMed] [Google Scholar]
  65. Garg A, Bhasin M, Raghava GP. Support vector machine-based method for subcellular localization of human proteins using amino acid compositions, their order, and similarity search. J Biol Chem. 2005;280:14427014432. doi: 10.1074/jbc.M411789200. [DOI] [PubMed] [Google Scholar]
  66. Bhasin M, Raghava GP. ESLpred: SVM-based method for subcellular localization of eukaryotic proteins using dipeptide composition and PSI-BLAST. Nuclei Acid Res. 2004;32:414–419. doi: 10.1093/nar/gkh350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Xue L, Bajorath J. Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Comb Chem High Throughput Screen. 2000;3:363–372. doi: 10.2174/1386207003331454. [DOI] [PubMed] [Google Scholar]
  68. Xue L, Godden JW, Bajorath J. Identification of a preferred set of descriptors for compound classification based on principal component analysis. J Chem Inf Comput Sci. 1999;39:669–704. [Google Scholar]
  69. Xue Y, Li ZR, Yan CW, Sun LZ, Chen X, Chen YZ. Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents. J Chem Inf Comput Sci. 2004;44:1630–1638. doi: 10.1021/ci049869h. [DOI] [PubMed] [Google Scholar]
  70. Brown RD, Martin YC. Use of structure-activity data to compare structure-based clustering methods and descriptors for use in compound selection. J Chem Inf Comput Sci. 1996;36:572–584. doi: 10.1021/ci9501047. [DOI] [Google Scholar]
  71. Cramer RD, Patterson DE, Bunce JD. Comparative molecular field analysis (CoMFA): effect of shape on binding of steroids to carrier proteins. J Am Chem Soc. 1988;110:5959–5967. doi: 10.1021/ja00226a005. [DOI] [PubMed] [Google Scholar]
  72. Glen WG, Dunn WJ, Scott RD. Principal components analysis and partial least squares regression. Tetrahedron Comput Methodol. 1989;2:349–376. doi: 10.1016/0898-5529(89)90004-3. [DOI] [Google Scholar]
  73. Matter H. Selecting optimally diverse compounds from structure databases: a validation study of two-dimensional and three-dimensional molecular descriptors. J Med Chem. 1997;40:1219–1229. doi: 10.1021/jm960352+. [DOI] [PubMed] [Google Scholar]
  74. Matter H, Pötter T. Comparing 3D pharmacophore triplets and 2D fingerprints for selecting diverse compound subsets. J Chem Inf Comput Sci. 1999;39:1211–1225. doi: 10.1021/ci980185h. [DOI] [Google Scholar]
  75. Patterson DEP, Cramer RD, Ferguson AM, Clark RD, Weinberger LE. Neighborhood behavior: a useful concept for validation of "molecular diversity" descriptors. J Med Chem. 1996;39:049 –3059. doi: 10.1021/jm960290n. [DOI] [PubMed] [Google Scholar]
  76. Xue L, Godden JW, Bajorath J. Evaluation of descriptors and mini-fingerprints for the identification of molecules with similar activity. J Chem Inf Comput Sci. 2000;40:1227–1234. doi: 10.1021/ci000327j. [DOI] [PubMed] [Google Scholar]
  77. Lin HH, Han LY, Zhang HL, Zheng CJ, Xie B, Chen YZ. Prediction of the functional class of DNA-binding proteins from sequence derived structural and physicochemical properties. 2006. [DOI] [PMC free article] [PubMed]
  78. Chen C, Zhou X, Tian Y, Zhou X, Cai P. Predicting protein structural class with pseudo-amino acid composition and support vector machine fusion network. Anal Biochem. 2006;357:116–121. doi: 10.1016/j.ab.2006.07.022. [DOI] [PubMed] [Google Scholar]
  79. Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D. Support vector machines classification and validation of cancer tissue samples using microarray expression data. Bioinformatics. 2000;16:906–914. doi: 10.1093/bioinformatics/16.10.906. [DOI] [PubMed] [Google Scholar]
  80. Yu H, Yang J, Wang W, Han J. Discovering compact and highly discriminative features or feature combinations of drug activities using support vector machines. . Proc IEEE Comput Soc Bioinform Conf. 2003:220–228. [PubMed] [Google Scholar]
  81. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, Pilbout S, Schneider M. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nuclei Acid Res. 2003;31:365–370. doi: 10.1093/nar/gkg095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths–Jones S, Howe KL, Marshall M, Sonnhammer EL. The Pfam protein families database. Nuclei Acid Res. 2002;31:276–280. doi: 10.1093/nar/30.1.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Heyer LJ, Kruglyak S, Yooseph S. Exploring expression data: Identification and analysis of coexpressed genes. Genome Res. 1999;9:1106–1115. doi: 10.1101/gr.9.11.1106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Broto P, Moreau G, Vandicke C. Molecular structures: perception, autocorrelation descriptor and SAR studies. Eur J Med Chem. 1984;19:71–78. [Google Scholar]
  85. Kawashima S, Kanehisa M. AAindex: amino acid index database. Nuclei Acid Res. 2000;28:374. doi: 10.1093/nar/28.1.374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Cid H, Bunster M, Canales M, Gazitua F. Hydrophobicity and structural classes in proteins. Protein Eng. 1992;5:373–375. doi: 10.1093/protein/5.5.373. [DOI] [PubMed] [Google Scholar]
  87. Bhaskaran R, Ponnuswammy PK. Positional flexibilities of amino acid residues in globular proteins. Int J Pept Protein Res. 1988;32:242–255. doi: 10.1111/j.1399-3011.1984.tb00944.x. [DOI] [PubMed] [Google Scholar]
  88. Charton M, Charton BI. The structural dependence of amino acid hydrophobicity parameters. J Theor Biol. 1982;99:629–644. doi: 10.1016/0022-5193(82)90191-6. [DOI] [PubMed] [Google Scholar]
  89. Chothia C. The nature of the accessible and buried surfaces in proteins. J Mol Biol. 1976;15:1–12. doi: 10.1016/0022-2836(76)90191-1. [DOI] [PubMed] [Google Scholar]
  90. Bigelow CC. On the average hydrophobicity of proteins and the relation between it and protein structure. J Theor Biol. 1967;16:187–211. doi: 10.1016/0022-5193(67)90004-5. [DOI] [PubMed] [Google Scholar]
  91. Charton M. Protein folding and the genetic code: an alternative quantitative model. J Theor Biol. 1981;91:115–373. doi: 10.1016/0022-5193(81)90377-5. [DOI] [PubMed] [Google Scholar]
  92. Dayhoff H, Calderone H. Composition of proteins. Atlas of Protein Sequence and Structure. 1978;5:363–373. [Google Scholar]
  93. Moreau G, Broto P. Autocorrelation of molecular structures, application to SAR studies. Nour J Chim. 1980;4:757–767. [Google Scholar]
  94. Moran PAP. Notes on continuous stochastic phenomena. Biometrika. 1950;37:17–23. [PubMed] [Google Scholar]
  95. Geary RC. The contiguity ratio and statistical mapping. Incorp Statist. 1954;5:115–145. doi: 10.2307/2986645. [DOI] [Google Scholar]
  96. Cai YD, Liu XJ, Xu X, Chou KC. Support vector machines for prediction of protein subcellular location by incorporating quasi-sequence-order effect. J Cell Biochem. 2002;84:343–348. doi: 10.1002/jcb.10030. [DOI] [PubMed] [Google Scholar]
  97. Chou KC, Cai YD. Using functional domain composition and support vector machines for prediction of protein subcellular location. J Biol Chem. 2002;277:45765–45769. doi: 10.1074/jbc.M204161200. [DOI] [PubMed] [Google Scholar]
  98. Jones DD. Amino acid properties and side-chain orientation in proteins: a cross correlation approach. J Theor Biol. 1975;50:167–183. doi: 10.1016/0022-5193(75)90031-4. [DOI] [PubMed] [Google Scholar]
  99. Hopp TP, Woods KR. Prediction of protein antigenic determinants from amino acid sequences. . Proc Natl Acad Sci USA. 1981;78:3824–3828. doi: 10.1073/pnas.78.6.3824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Feng ZP. An overview on predicting the subcellular location of a protein. In Silico Biol. 2002;2:291–303. [PubMed] [Google Scholar]
  101. Burges CJC. A tutorial on support vector machines for pattern recognition. Data Min Knowl Dis. 1998;2:121–167. doi: 10.1023/A:1009715923555. [DOI] [Google Scholar]
  102. Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics. 2000;16:412–424. doi: 10.1093/bioinformatics/16.5.412. [DOI] [PubMed] [Google Scholar]
  103. Roulston JE. Screening with tumor markers: critical issues. Mol Biotechnol. 2002;20:153–162. doi: 10.1385/MB:20:2:153. [DOI] [PubMed] [Google Scholar]
  104. Provost F, Fawcett T, Kohavi R. Proc 15th International Conf on Machine Learning. San Francisco, California , Morgan Kaufmann; 1998. The case against accuracy estimation for comparing induction algorithms; pp. 445–453. [Google Scholar]

Articles from BMC Bioinformatics are provided here courtesy of BMC

RESOURCES