Skip to main content
Journal of Experimental Pathology (Oxford, England) logoLink to Journal of Experimental Pathology (Oxford, England)
. 1990 Apr;71(2):257–268.

Ultrastructural correlates of ischaemic contracture during global subtotal ischaemia in the rat heart.

I S Harper 1, E van der Merwe 1, P Owen 1, L H Opie 1
PMCID: PMC1998717  PMID: 2331408

Abstract

The development of left ventricular ischaemic contracture and its correlation with ultrastructural and sarcolemmal permeability defects were studied in isolated rat hearts during global subtotal ischaemia. With acetate as substrate the hearts exhibited a rise in diastolic tension after 8-10 min at which time small foci of contracted myocytes were scattered throughout the myocardium. In hearts with 5% of the maximum diastolic tension (termed 5% contracture), the foci were situated predominantly in the subendocardium and papillary muscle. Contracted myocytes in these foci were capable of excluding ionic lanthanum thus demonstrating retention of normal sarcolemmal permeability properties. With 30% contracture ultrastructural damage had spread to the subepicardium and with further contracture there was an associated increase in the number and size of foci in all regions. In these foci, swelling of the tubular sarcolemmal system and occasionally of the sarcoplasmic reticulum appeared to precede myofibrillar contraction. At 50% contracture lanthanum influx into contracted cells became more frequent. Hearts developed full contracture by 15-18 min at which time most myocytes were contracted and retained lanthanum intracellularly. The heterogeneity of the response at a cellular level may offer a possible explanation for the lack of correlation between contracture and tissue ATP. A possible sequence of structural injury leading to impaired calcium homeostasis is also suggested.

Full text

PDF
257

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison T. B., Ramey C. A., Holsinger J. W., Jr Transmural gradients of left ventricular tissue metabolites after circumflex artery ligation in dogs. J Mol Cell Cardiol. 1977 Oct;9(10):837–852. doi: 10.1016/s0022-2828(77)80060-6. [DOI] [PubMed] [Google Scholar]
  2. Bing O. H., Fishbein M. C. Mechanical and structural correlates of contracture induced by metabolic blockade in cardiac muscle from the rat. Circ Res. 1979 Aug;45(2):298–308. doi: 10.1161/01.res.45.2.298. [DOI] [PubMed] [Google Scholar]
  3. Bricknell O. L., Daries P. S., Opie L. H. A relationship between adenosine triphosphate, glycolysis and ischaemic contracture in the isolated rat heart. J Mol Cell Cardiol. 1981 Oct;13(10):941–945. doi: 10.1016/0022-2828(81)90292-3. [DOI] [PubMed] [Google Scholar]
  4. Bricknell O. L., Opie L. H. Effects of substrates on tissue metabolic changes in the isolated rat heart during underperfusion and on release of lactate dehydrogenase and arrhythmias during reperfusion. Circ Res. 1978 Jul;43(1):102–115. doi: 10.1161/01.res.43.1.102. [DOI] [PubMed] [Google Scholar]
  5. Burdett E., Beeler T., Klip A. Distribution of glucose transporters and insulin receptors in the plasma membrane and transverse tubules of skeletal muscle. Arch Biochem Biophys. 1987 Feb 15;253(1):279–286. doi: 10.1016/0003-9861(87)90661-8. [DOI] [PubMed] [Google Scholar]
  6. Crass M. F., 3rd, Holsinger J. W., Jr, Shipp J. C., Eliot R. S., Pieper G. M. Transmural gradients in the ischemic dog left ventricle: metabolism of endogenous triglycerides and glycogen. Recent Adv Stud Cardiac Struct Metab. 1975;7:225–230. [PubMed] [Google Scholar]
  7. Edoute Y., van der Merwe E., Sanan D., Kotzé J. C., Steinmann C., Lochner A. Normothermic ischemic cardiac arrest of the isolated working rat heart. Effects of time and reperfusion on myocardial ultrastructure, mitochondrial oxidative function, and mechanical recovery. Circ Res. 1983 Nov;53(5):663–678. doi: 10.1161/01.res.53.5.663. [DOI] [PubMed] [Google Scholar]
  8. Harper I. S., Lochner A. Sarcolemmal integrity during ischaemia and reperfusion of the isolated rat heart. Basic Res Cardiol. 1989 Mar-Apr;84(2):208–226. doi: 10.1007/BF01907930. [DOI] [PubMed] [Google Scholar]
  9. Haworth R. A., Goknur A. B., Hunter D. R., Hegge J. O., Berkoff H. A. Inhibition of calcium influx in isolated adult rat heart cells by ATP depletion. Circ Res. 1987 Apr;60(4):586–594. doi: 10.1161/01.res.60.4.586. [DOI] [PubMed] [Google Scholar]
  10. Hearse D. J., Garlick P. B., Humphrey S. M. Ischemic contracture of the myocardium: mechanisms and prevention. Am J Cardiol. 1977 Jun;39(7):986–993. doi: 10.1016/s0002-9149(77)80212-9. [DOI] [PubMed] [Google Scholar]
  11. Jarmakani J. M., Nagatomo T., Langer G. A. The effect of calcium and high-energy phosphate compounds on myocardial contracture in the newborn and adult rabbit. J Mol Cell Cardiol. 1978 Nov;10(11):1017–1029. doi: 10.1016/0022-2828(78)90398-x. [DOI] [PubMed] [Google Scholar]
  12. Kotsias B. A., Obejero Paz C. A., Muchnik S. Effects of resting membrane potential and intactness of the T-tubules on caffeine contractures in rat skeletal muscle. Life Sci. 1987 Jun 8;40(23):2269–2276. doi: 10.1016/0024-3205(87)90063-4. [DOI] [PubMed] [Google Scholar]
  13. Lowe J. E., Cummings R. G., Adams D. H., Hull-Ryde E. A. Evidence that ischemic cell death begins in the subendocardium independent of variations in collateral flow or wall tension. Circulation. 1983 Jul;68(1):190–202. doi: 10.1161/01.cir.68.1.190. [DOI] [PubMed] [Google Scholar]
  14. Nathan R. D., Kanai K., Clark R. B., Giles W. Selective block of calcium current by lanthanum in single bullfrog atrial cells. J Gen Physiol. 1988 Apr;91(4):549–572. doi: 10.1085/jgp.91.4.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Opie L. H., Mansford K. R., Owen P. Effects of increased heart work on glycolysis and adenine nucleotides in the perfused heart of normal and diabetic rats. Biochem J. 1971 Sep;124(3):475–490. doi: 10.1042/bj1240475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sage M. D. Ultrastructural alterations to myocytes and associated microvascular functional changes at lateral margins of developing experimental myocardial infarcts. J Mol Cell Cardiol. 1986 Oct;18 (Suppl 4):17–21. doi: 10.1016/s0022-2828(86)80020-7. [DOI] [PubMed] [Google Scholar]
  17. Wendt-Gallitelli M. F., Isenberg G. Extra- and intracellular lanthanum: modified calcium distribution, inward currents and contractility in guinea pig ventricular preparations. Pflugers Arch. 1985 Dec;405(4):310–322. doi: 10.1007/BF00595683. [DOI] [PubMed] [Google Scholar]
  18. van der Merwe E., Harper I. S., Owen P., Lochner A., Wynchank S., Opie L. H. Ultrastructural observations on the effects of different substrates on ischaemic contracture in global subtotal ischaemia in the rat heart. Basic Res Cardiol. 1987;82 (Suppl 2):285–287. doi: 10.1007/978-3-662-11289-2_27. [DOI] [PubMed] [Google Scholar]

Articles from Journal of experimental pathology (Oxford, England) are provided here courtesy of Wiley

RESOURCES