Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1986 Dec;54(6):943–950. doi: 10.1038/bjc.1986.265

Anthracycline-induced inhibition of membrane permeability functions dependent on metabolic energy.

A C Croce, E Prosperi, R Supino, G Bottiroli
PMCID: PMC2001592  PMID: 3801290

Abstract

The influence of anthracyclines on membrane permeability functions has been investigated in HeLa cells by monitoring the efflux of fluorescein. Release of the fluorescent dye, dependent on the metabolic energy supply, occurs after the intracellular accumulation and enzymatic hydrolysis of the non-fluorescent substrate fluorescein diacetate (FDA). Flow cytometric evaluation of the efflux kinetics showed that adriamycin (ADR), N-trifluoroacetyladriamycin-14-valerate (AD-32) and daunorubicin (DNR) inhibited the permeability process. The degree of inhibition was dependent, though to different extent, on the intracellular concentration of each drug. An increase in the efflux rate was always observed when the cells were treated with the drugs in the presence of 20 mM glucose. Relationship of these effects with energetic metabolism was supported by the finding that ATP levels were lowered by the drugs and increased by glucose. Evaluation of the cytotoxicity induced by each drug showed that the intracellular amount necessary to inhibit cell survival by 50% was of the same order of magnitude as that which decreases to 50% membrane permeability to fluorescein. These results indicate a correspondence in the concentrations of anthracyclines required for inducing cytotoxicity and for inhibiting membrane permeability functions dependent on the metabolic energy supply.

Full text

PDF
943

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baisch H. Effects of X-rays on cell membranes. II. Changes of permeability measured by fluorescein efflux. Radiat Environ Biophys. 1978 Oct 12;15(3):221–228. doi: 10.1007/BF02176791. [DOI] [PubMed] [Google Scholar]
  2. Chahwala S. B., Hickman J. A. Investigations of the action of the antitumour drug adriamycin on tumour cell membrane functions--I. Biochem Pharmacol. 1985 May 1;34(9):1501–1505. doi: 10.1016/0006-2952(85)90691-4. [DOI] [PubMed] [Google Scholar]
  3. Dano K. Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim Biophys Acta. 1973 Oct 25;323(3):466–483. doi: 10.1016/0005-2736(73)90191-0. [DOI] [PubMed] [Google Scholar]
  4. Ferrero M. E., Ferrero E., Gaja G., Bernelli-Zazzera A. Adriamycin: energy metabolism and mitochondrial oxidations in the heart of treated rabbits. Biochem Pharmacol. 1976 Jan 15;25(2):125–130. doi: 10.1016/0006-2952(76)90278-1. [DOI] [PubMed] [Google Scholar]
  5. Folkers K., Liu M., Watanabe T., Porter T. H. Inhibition by adriamycin of the mitochondrial biosynthesis of coenzyme Q10 and implication for the cardiotoxicity of adriamycin in cancer patients. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1536–1542. doi: 10.1016/s0006-291x(77)80152-6. [DOI] [PubMed] [Google Scholar]
  6. Goormaghtigh E., Brasseur R., Ruysschaert J. M. Adriamycin inactivates cytochrome c oxidase by exclusion of the enzyme from its cardiolipin essential environment. Biochem Biophys Res Commun. 1982 Jan 15;104(1):314–320. doi: 10.1016/0006-291x(82)91976-3. [DOI] [PubMed] [Google Scholar]
  7. Goormaghtigh E., Chatelain P., Caspers J., Ruysschaert J. M. Evidence of a specific complex between adriamycin and negatively-charged phospholipids. Biochim Biophys Acta. 1980 Mar 27;597(1):1–14. doi: 10.1016/0005-2736(80)90145-5. [DOI] [PubMed] [Google Scholar]
  8. Goormaghtigh E., Ruysschaert J. M. Anthracycline glycoside-membrane interactions. Biochim Biophys Acta. 1984 Sep 3;779(3):271–288. doi: 10.1016/0304-4157(84)90013-3. [DOI] [PubMed] [Google Scholar]
  9. Gosalvez M., Blanco M., Hunter J., Miko M., Chance B. Effects of anticancer agents on the respiration of isolated mitochondria and tumor cells. Eur J Cancer. 1974 Sep;10(9):567–574. doi: 10.1016/0014-2964(74)90044-9. [DOI] [PubMed] [Google Scholar]
  10. Israel M., Modest E. J., Frei E., 3rd N-trifluoroacetyladriamycin-14-valerate, an analog with greater experimental antitumor activity and less toxicity than adriamycin. Cancer Res. 1975 May;35(5):1365–1368. [PubMed] [Google Scholar]
  11. Iwamoto Y., Hansen I. L., Porter T. H., Folkers K. Inhibition of coenzyme Q10-enzymes, succinoxidase and NADH-oxidase, by adriamycin and other quinones having antitumor activity. Biochem Biophys Res Commun. 1974 Jun 4;58(3):633–638. doi: 10.1016/s0006-291x(74)80465-1. [DOI] [PubMed] [Google Scholar]
  12. Johnson L. V., Walsh M. L., Bockus B. J., Chen L. B. Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol. 1981 Mar;88(3):526–535. doi: 10.1083/jcb.88.3.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krishan A., Israel M., Modest E. J., Frei E., 3rd Differences in cellular uptake and cytofluorescence of adriamycin and N-trifluoroacetyladriamycin-14-valerate. Cancer Res. 1976 Jun;36(6):2108–2109. [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Lampidis T. J., Bernal S. D., Summerhayes I. C., Chen L. B. Selective toxicity of rhodamine 123 in carcinoma cells in vitro. Cancer Res. 1983 Feb;43(2):716–720. [PubMed] [Google Scholar]
  16. Landolph J. R., Bhatt R. S., Telfer N., Heidelberger C. Comparison of adriamycin- and ouabain-induced cytotoxicity and inhibition of 86rubidium transport in wild-type and ouabain-resistant C3H/10T1/2 mouse fibroblasts. Cancer Res. 1980 Dec;40(12):4581–4588. [PubMed] [Google Scholar]
  17. Mailer K., Petering D. H. Inhibition of oxidative phosphorylation in tumor cells and mitochondria by daunomycin and adriamycin. Biochem Pharmacol. 1976 Sep 15;25(18):2085–2089. doi: 10.1016/0006-2952(76)90434-2. [DOI] [PubMed] [Google Scholar]
  18. Murphree S. A., Cunningham L. S., Hwang K. M., Sartorelli A. C. Effects of adriamycin on surface properties of sarcoma 180 ascites cells. Biochem Pharmacol. 1976 May 15;25(10):1227–1231. doi: 10.1016/0006-2952(76)90374-9. [DOI] [PubMed] [Google Scholar]
  19. Murphree S. A., Tritton T. R., Smith P. L., Sartorelli A. C. Adriamycin-induced changes in the surface membrane of sarcoma 180 ascites cells. Biochim Biophys Acta. 1981 Dec 7;649(2):317–324. doi: 10.1016/0005-2736(81)90421-1. [DOI] [PubMed] [Google Scholar]
  20. Prosperi E., Croce A. C., Bottiroli G., Supino R. Flow cytometric analysis of membrane permeability properties influencing intracellular accumulation and efflux of fluorescein. Cytometry. 1986 Jan;7(1):70–75. doi: 10.1002/cyto.990070110. [DOI] [PubMed] [Google Scholar]
  21. Prosperi E., Croce A. C., Bottiroli G., Supino R. Influence of daunorubicin on membrane permeability properties: detection by means of intracellular accumulation and efflux of fluorescein. Chem Biol Interact. 1985 Aug-Sep;54(3):271–280. doi: 10.1016/s0009-2797(85)80168-x. [DOI] [PubMed] [Google Scholar]
  22. Rogers K. E., Carr B. I., Tökés Z. A. Cell surface-mediated cytotoxicity of polymer-bound Adriamycin against drug-resistant hepatocytes. Cancer Res. 1983 Jun;43(6):2741–2748. [PubMed] [Google Scholar]
  23. Rotman B., Papermaster B. W. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc Natl Acad Sci U S A. 1966 Jan;55(1):134–141. doi: 10.1073/pnas.55.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sengbusch G. V., Couwenbergs C., Kühner J., Müller U. Fluorogenic substrate turnover in single living cells. Histochem J. 1976 Jul;8(4):341–350. doi: 10.1007/BF01003822. [DOI] [PubMed] [Google Scholar]
  25. Siegfried J. M., Burke T. G., Tritton T. R. Cellular transport of anthracyclines by passive diffusion. Implications for drug resistance. Biochem Pharmacol. 1985 Mar 1;34(5):593–598. doi: 10.1016/0006-2952(85)90251-5. [DOI] [PubMed] [Google Scholar]
  26. Skovsgaard T., Nissen N. I. Membrane transport of anthracyclines. Pharmacol Ther. 1982;18(3):293–311. doi: 10.1016/0163-7258(82)90034-1. [DOI] [PubMed] [Google Scholar]
  27. Solaini G., Ronca G., Bertelli A. Inhibitory effects of several anthracyclines on mitochondrial respiration and coenzyme Q10 protection. Drugs Exp Clin Res. 1985;11(8):533–537. [PubMed] [Google Scholar]
  28. Sontag W. A comparative kinetic study on the conversion of fluoresceindiacetate to fluorescein in living cells and in vitro. Radiat Environ Biophys. 1977 Apr 27;14(1):1–12. doi: 10.1007/BF01331024. [DOI] [PubMed] [Google Scholar]
  29. Steen H. B., Lindmo T. Flow cytometry: a high-resolution instrument for everyone. Science. 1979 Apr 27;204(4391):403–404. doi: 10.1126/science.441727. [DOI] [PubMed] [Google Scholar]
  30. Tritton T. R., Yee G., Wingard L. B., Jr Immobilized adriamycin: a tool for separating cell surface from intracellular mechanisms. Fed Proc. 1983 Feb;42(2):284–287. [PubMed] [Google Scholar]
  31. Wiener S., Wiener R., Urivetzky M., Meilman E. Coprecipitation of ATP with potassium perchlorate: the effect of the firefly enzyme assay of ATP in tissue and blood. Anal Biochem. 1974 Jun;59(2):489–500. doi: 10.1016/0003-2697(74)90302-9. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES