Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1987 Nov;56(5):555–560. doi: 10.1038/bjc.1987.241

The 5T2 mouse multiple myeloma model: characterization of 5T2 cells within the bone marrow.

J W Croese 1, C M Vas Nunes 1, J Radl 1, M H van den Enden-Vieveen 1, R J Brondijk 1, W J Boersma 1
PMCID: PMC2001900  PMID: 3426918

Abstract

The transplantable C57BL/KaLwRij mouse 5T2 multiple myeloma (MM) is a new animal model for studies on MM in man. Histological examination of the 5T2 MM cells revealed their morphological heterogeneity. In this study we investigated whether this heterogeneity reflects subpopulations of 5T2 MM cells with different biological properties. 5T2 MM bone marrow cells were separated according to their sedimentation velocity (s.v.). When intravenously injected into syngeneic recipient mice, cells with s.v. of 8 mm h-1 led to the development of detectable 5T2 MM after 6 weeks; in contrast, 18 weeks elapsed before the same result was achieved with cells of s.v. lower than 5 mm h-1. Flow cytometric analysis revealed that 5T2 MM cells had an aneuploid DNA content and that most cycling 5T2 MM cells were large, their s.v. rate exceeding 9 mm h-1. It was further demonstrated that about half of all aneuploid cells carried on their membrane the 5T2 MM idiotype. The majority of the idiotype-positive cells had s.v. rate exceeding 6.5 mm h-1 (16%-39%) or lower than 3 mm h-1 (16%-19%). The 5T2 MM was shown to contain subpopulations of cells of different size, proliferation capacity and expression of their membrane 5T2 idiotype; this, most likely reflects cells in different stages of differentiation. The mouse 5T2 MM corresponds also in this respect with MM in man.

Full text

PDF
555

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boersma W. J., Steinmeier F. A., Haaijman J. J. Age-related changes in the relative numbers of Thy-1- and Lyt-2-bearing peripheral blood lymphocytes in mice: a longitudinal approach. Cell Immunol. 1985 Jul;93(2):417–430. doi: 10.1016/0008-8749(85)90146-7. [DOI] [PubMed] [Google Scholar]
  2. Caligaris-Cappio F., Bergui L., Tesio L., Pizzolo G., Malavasi F., Chilosi M., Campana D., van Camp B., Janossy G. Identification of malignant plasma cell precursors in the bone marrow of multiple myeloma. J Clin Invest. 1985 Sep;76(3):1243–1251. doi: 10.1172/JCI112080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Daley M. J. Intratumor maturational heterogeneity within the murine myeloma MOPC-315. Cancer Res. 1981 Jan;41(1):187–191. [PubMed] [Google Scholar]
  4. Hijmans W., Schuit H. R., Klein F. An immunofluorescence procedure for the detection of intracellular immunoglobulins. Clin Exp Immunol. 1969 Apr;4(4):457–472. [PMC free article] [PubMed] [Google Scholar]
  5. Hoover R. G., Gebel H. M., Dieckgraefe B. K., Hickman S., Rebbe N. F., Hirayama N., Ovary Z., Lynch R. G. Occurrence and potential significance of increased numbers of T cells with Fc receptors in myeloma. Immunol Rev. 1981;56:115–139. doi: 10.1111/j.1600-065x.1981.tb01049.x. [DOI] [PubMed] [Google Scholar]
  6. Latreille J., Barlogie B., Dosik G., Johnston D. A., Drewinko B., Alexanian R. Cellular DNA content as a marker of human multiple myeloma. Blood. 1980 Mar;55(3):403–408. [PubMed] [Google Scholar]
  7. MacKenzie M. R., Lewis J. P. Cytogenetic evidence that the malignant event in multiple myeloma occurs in a precursor lymphocyte. Cancer Genet Cytogenet. 1985 May;17(1):13–20. doi: 10.1016/0165-4608(85)90096-2. [DOI] [PubMed] [Google Scholar]
  8. Mellstedt H., Holm G., Björkholm M. Multiple myeloma, Waldenström's macroglobulinemia, and benign monoclonal gammopathy: characteristics of the B cell clone, immunoregulatory cell populations and clinical implications. Adv Cancer Res. 1984;41:257–289. doi: 10.1016/s0065-230x(08)60018-4. [DOI] [PubMed] [Google Scholar]
  9. Peest D., Brunkhorst U., Schedel I., Deicher H. In vitro immunoglobulin production by peripheral blood mononuclear cells from multiple myeloma patients and patients with benign monoclonal gammopathy. Regulation by cell subsets. Scand J Immunol. 1984 Feb;19(2):149–157. doi: 10.1111/j.1365-3083.1984.tb00911.x. [DOI] [PubMed] [Google Scholar]
  10. Radl J., Croese J. W., Zurcher C., van den Enden-Vieveen M. H., Brondijk R. J., Kazil M., Haaijman J. J., Reitsma P. H., Bijvoet O. L. Influence of treatment with APD-bisphosphonate on the bone lesions in the mouse 5T2 multiple myeloma. Cancer. 1985 Mar 1;55(5):1030–1040. doi: 10.1002/1097-0142(19850301)55:5<1030::aid-cncr2820550518>3.0.co;2-y. [DOI] [PubMed] [Google Scholar]
  11. Radl J., De Glopper E. D., Schuit H. R., Zurcher C. Idiopathic paraproteinemia. II. Transplantation of the paraprotein-producing clone from old to young C57BL/KaLwRij mice. J Immunol. 1979 Feb;122(2):609–613. [PubMed] [Google Scholar]
  12. Rohrer J. W., Vasa K., Lynch R. G. Myeloma cell immunoglobulin expression during in vivo growth in diffusion chambers: evidence for repetitive cycles of differentiation. J Immunol. 1977 Sep;119(3):861–866. [PubMed] [Google Scholar]
  13. Taylor I. W. A rapid single step staining technique for DNA analysis by flow microfluorimetry. J Histochem Cytochem. 1980 Sep;28(9):1021–1024. doi: 10.1177/28.9.6157714. [DOI] [PubMed] [Google Scholar]
  14. Visser J. W., van den Engh G. J., van Bekkum D. W. Light scattering properties of murine hemopoietic cells. Blood Cells. 1980;6(3):391–407. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES