Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1987 Nov;56(5):577–584. doi: 10.1038/bjc.1987.244

Morphological and metastatic murine melanoma variants: motility, adhesiveness, cell surface and in vivo properties.

S R Clark 1, J S Brody 1, E Sidebottom 1
PMCID: PMC2001911  PMID: 3426920

Abstract

The behaviour in vivo of tight and loose variants of murine melanoma cells is further characterized. In vitro clonal morphology is reproduced on a variety of substrates. Results suggest that repeated selection of loose cells can co-select for cells with high metastatic and colonization potentials. Measurement of cell motility shows that 1G3 (loose) cells are more motile than 1G8 (tight) which are restricted to movements within clonal boundaries. Studies of adhesive properties show that loose cells are more easily detached from the substrate with trypsin or EDTA and that both cell lines attach more quickly to monolayers of loose cells than to tight ones. No gross differences are found either in attachment rates to plastic and ECM or in aggregation and disaggregation rates. Analysis of the cell surface has not revealed any differences between 1G8 and 1G3 in the sialylation of terminal galactose and N-acetylgalactosamine residues or in neuraminidase releasable sialic acid. The binding patterns of iodinated lectins to SDS-PAGE separated proteins are similar for both lines except for one 85/90 KD protein which is more abundant in 1G3 than 1G8 cells after neuraminidase treatment. The results show enhanced differences in metastatic potential of tight and loose clones after selective cloning and that there may be important differences in motility and cell-substrate interactions.

Full text

PDF
577

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amici C., Ferrantini M., Benedetto A., Belardelli F., Gresser I. Biologic and biochemical differences between in vitro and in vivo passaged Friend erythroleukemia cells. II. Changes in cell surface glycoproteins associated with a highly malignant phenotype. Int J Cancer. 1984 Sep 15;34(3):397–402. doi: 10.1002/ijc.2910340317. [DOI] [PubMed] [Google Scholar]
  2. Avnur Z., Geiger B. The removal of extracellular fibronectin from areas of cell-substrate contact. Cell. 1981 Jul;25(1):121–132. doi: 10.1016/0092-8674(81)90236-1. [DOI] [PubMed] [Google Scholar]
  3. Barnett S. C., Eccles S. A. Studies of mammary carcinoma metastasis in a mouse model system. I: Derivation and characterization of cells with different metastatic properties during tumour progression in vivo. Clin Exp Metastasis. 1984 Jan-Mar;2(1):15–36. doi: 10.1007/BF00132304. [DOI] [PubMed] [Google Scholar]
  4. Briles E. B., Kornfeld S. Isolation and metastatic properties of detachment variants of B16 melanoma cells. J Natl Cancer Inst. 1978 Jun;60(6):1217–1222. doi: 10.1093/jnci/60.6.1217. [DOI] [PubMed] [Google Scholar]
  5. Cifone M. A. Correlation between bizarre colony morphology and metastatic potential of tumor cells. Exp Cell Res. 1981 Feb;131(2):435–441. doi: 10.1016/0014-4827(81)90252-4. [DOI] [PubMed] [Google Scholar]
  6. Damsky C. H., Richa J., Solter D., Knudsen K., Buck C. A. Identification and purification of a cell surface glycoprotein mediating intercellular adhesion in embryonic and adult tissue. Cell. 1983 Sep;34(2):455–466. doi: 10.1016/0092-8674(83)90379-3. [DOI] [PubMed] [Google Scholar]
  7. Dennis J., Waller C., Timpl R., Schirrmacher V. Surface sialic acid reduces attachment of metastatic tumour cells to collagen type IV and fibronectin. Nature. 1982 Nov 18;300(5889):274–276. doi: 10.1038/300274a0. [DOI] [PubMed] [Google Scholar]
  8. FOULDS L. Mammary tumours in hybrid mice; growth and progression of spontaneous tumours. Br J Cancer. 1949 Sep;3(3):345–375. doi: 10.1038/bjc.1949.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frost P., Kerbel R. S. On a possible epigenetic mechanism(s) of tumor cell heterogeneity. The role of DNA methylation. Cancer Metastasis Rev. 1983;2(4):375–378. doi: 10.1007/BF00048568. [DOI] [PubMed] [Google Scholar]
  10. Goldstein I. J., Hayes C. E. The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem. 1978;35:127–340. doi: 10.1016/s0065-2318(08)60220-6. [DOI] [PubMed] [Google Scholar]
  11. Guy D., Latner A. L., Sherbet G. V., Turner G. A. Surface properties of cells isolated from non-metastasizing and metastasizing hamster lymphosarcomas. Br J Cancer. 1980 Dec;42(6):915–921. doi: 10.1038/bjc.1980.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hart I. R. The selection and characterization of an invasive variant of the B16 melanoma. Am J Pathol. 1979 Dec;97(3):587–600. [PMC free article] [PubMed] [Google Scholar]
  13. Hayashi H., Ishimaru Y. Morphological and biochemical aspects of adhesiveness and dissociation of cancer cells. Int Rev Cytol. 1981;70:139–215. doi: 10.1016/s0074-7696(08)61132-8. [DOI] [PubMed] [Google Scholar]
  14. Heppner G. H. Tumor heterogeneity. Cancer Res. 1984 Jun;44(6):2259–2265. [PubMed] [Google Scholar]
  15. Hubbard A. L., Cohn Z. A. The enzymatic iodination of the red cell membrane. J Cell Biol. 1972 Nov;55(2):390–405. doi: 10.1083/jcb.55.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jensenius J. C., Williams A. F. The binding of anti-immunoglobulin antibodies to rat thymocytes and thoracic duct lymphocytes. Eur J Immunol. 1974 Feb;4(2):91–97. doi: 10.1002/eji.1830040207. [DOI] [PubMed] [Google Scholar]
  17. Jones P. A., Scott-Burden T., Gevers W. Glycoprotein, elastin, and collagen secretion by rat smooth muscle cells. Proc Natl Acad Sci U S A. 1979 Jan;76(1):353–357. doi: 10.1073/pnas.76.1.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lacovara J., Cramer E. B., Quigley J. P. Fibronectin enhancement of directed migration of B16 melanoma cells. Cancer Res. 1984 Apr;44(4):1657–1663. [PubMed] [Google Scholar]
  19. McCarthy J. B., Basara M. L., Palm S. L., Sas D. F., Furcht L. T. The role of cell adhesion proteins--laminin and fibronectin--in the movement of malignant and metastatic cells. Cancer Metastasis Rev. 1985;4(2):125–152. doi: 10.1007/BF00050692. [DOI] [PubMed] [Google Scholar]
  20. McCarthy J. B., Furcht L. T. Laminin and fibronectin promote the haptotactic migration of B16 mouse melanoma cells in vitro. J Cell Biol. 1984 Apr;98(4):1474–1480. doi: 10.1083/jcb.98.4.1474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miner K. M., Kawaguchi T., Uba G. W., Nicolson G. L. Clonal drift of cell surface, melanogenic, and experimental metastatic properties of in vivo-selected, brain meninges-colonizing murine B16 melanoma. Cancer Res. 1982 Nov;42(11):4631–4638. [PubMed] [Google Scholar]
  22. Nanni P., de Giovanni C., Lollini P. L., Nicoletti G., Prodi G. TS/A: a new metastasizing cell line from a BALB/c spontaneous mammary adenocarcinoma. Clin Exp Metastasis. 1983 Oct-Dec;1(4):373–380. doi: 10.1007/BF00121199. [DOI] [PubMed] [Google Scholar]
  23. Nicolson G. L. Cell surface molecules and tumor metastasis. Regulation of metastatic phenotypic diversity. Exp Cell Res. 1984 Jan;150(1):3–22. doi: 10.1016/0014-4827(84)90696-7. [DOI] [PubMed] [Google Scholar]
  24. Nicolson G. L., Fidler I. J., Poste G. Effects of tertiary amine local anesthetics on the blood-borne implantation and cell surface properties of metastatic mouse melanoma cells. J Natl Cancer Inst. 1986 Mar;76(3):511–519. [PubMed] [Google Scholar]
  25. Nowell P. C. The clonal evolution of tumor cell populations. Science. 1976 Oct 1;194(4260):23–28. doi: 10.1126/science.959840. [DOI] [PubMed] [Google Scholar]
  26. Raz A., Zöller M., Ben-Ze'ev Cell configuration and adhesive properties of metastasizing and non-metastasizing BSp73 rat adenocarcinoma cells. Exp Cell Res. 1986 Jan;162(1):127–141. doi: 10.1016/0014-4827(86)90431-3. [DOI] [PubMed] [Google Scholar]
  27. Rieber M., Rieber M. S., Urbina C., Lira R. Relationship of a novel extracellular matrix glycoprotein to cell detachment in highly metastatic B16 melanoma: modulating effect of bromodeoxyuridine. Int J Cancer. 1984 Sep 15;34(3):427–432. doi: 10.1002/ijc.2910340322. [DOI] [PubMed] [Google Scholar]
  28. Schimke R. T., Hill A., Johnston R. N. Fifth Gordon Hamilton-Fairley memorial lecture. Methotrexate resistance and gene amplification: an experimental model for the generation of cellular heterogeneity. Br J Cancer. 1985 Apr;51(4):459–465. doi: 10.1038/bjc.1985.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sidebottom E., Clark S. R. Cell fusion segregates progressive growth from metastasis. Br J Cancer. 1983 Mar;47(3):399–405. doi: 10.1038/bjc.1983.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stackpole C. W., Alterman A. L., Fornabaio D. M. Growth characteristics of clonal cell populations constituting a B16 melanoma metastasis model system. Invasion Metastasis. 1985;5(3):125–143. [PubMed] [Google Scholar]
  31. Stackpole C. W. Distinct lung-colonizing and lung-metastasizing cell populations in B16 mouse melanoma. Nature. 1981 Feb 26;289(5800):798–800. doi: 10.1038/289798a0. [DOI] [PubMed] [Google Scholar]
  32. Sträuli P., Haemmerli G. The role of cancer cell motility in invasion. Cancer Metastasis Rev. 1984;3(2):127–141. doi: 10.1007/BF00047660. [DOI] [PubMed] [Google Scholar]
  33. Talmadge J. E., Fidler I. J. Cancer metastasis is selective or random depending on the parent tumour population. Nature. 1982 Jun 17;297(5867):593–594. doi: 10.1038/297593a0. [DOI] [PubMed] [Google Scholar]
  34. Turner G. A. Surface properties of the metastatic cell. Invasion Metastasis. 1982;2(4):197–216. [PubMed] [Google Scholar]
  35. Varani J., Lovett E. J. Phenotypic stability of murine tumor cells in vitro and in vivo. J Natl Cancer Inst. 1982 Jun;68(6):957–962. [PubMed] [Google Scholar]
  36. Varani J., Orr W., Ward P. A. Adhesive characteristics of tumor cell variants of high and low tumorigenic potential. J Natl Cancer Inst. 1980 May;64(5):1173–1178. [PubMed] [Google Scholar]
  37. Vollmers H. P., Birchmeier W. Monoclonal antibodies that prevent adhesion of B 16 melanoma cells and reduce metastases in mice: crossreaction with human tumor cells. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6863–6867. doi: 10.1073/pnas.80.22.6863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Walther B. T., Ohman R., Roseman S. A quantitative assay for intercellular adhesion. Proc Natl Acad Sci U S A. 1973 May;70(5):1569–1573. doi: 10.1073/pnas.70.5.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yogeeswaran G., Salk P. L. Metastatic potential is positively correlated with cell surface sialylation of cultured murine tumor cell lines. Science. 1981 Jun 26;212(4502):1514–1516. doi: 10.1126/science.7233237. [DOI] [PubMed] [Google Scholar]
  40. Yogeeswaran G., Stein B. S., Sebastian H. Altered cell surface organization of gangliosides and sialylglycoproteins of mouse metastatic melanoma variant lines selected in vivo for enhanced lung implantation. Cancer Res. 1978 May;38(5):1336–1344. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES