Abstract
The development of a serum-free, low-protein culture medium has allowed the detection of tumour-specific cytolytic cells in EMT6 immunized mice bearing EMT6 multicellular tumour spheroids. Spheroid associated (SAC) and peritoneal (PC) effector cells were specific to EMT6 as the target cell, not killing line 1, P815 or RIF-1. The natural killer (NK) cell sensitive target YAC-1 was also not lysed by SAC or PC, indicating undetectable levels of NK cells present within infiltrated spheroids. In contrast, high levels of cytolytic activity were present in SAC, PC and spleen cells against WEHI-164, a line sensitive to natural cytotoxic (NC) and macrophage mediated killing. The EMT6 specific activity was mediated by Thyl+, Lyt2+ cells. The anti-WEHI-164 effector cell population was Thyl-, Lyt2-. The WEHI-164 killer cells were present in SAC and PC from unimmunized mice while the EMT6 specific effector cells were not. After separation of SAC and PC by size using centrifugal elutriation, anti-EMT6 activity was present only in the lymphocyte fraction while anti-WEHI-164 activity was enriched in the macrophage fraction.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chen A. R., McKinnon K. P., Koren H. S. Lipopolysaccharide (LPS) stimulates fresh human monocytes to lyse actinomycin D-treated WEHI-164 target cells via increased secretion of a monokine similar to tumor necrosis factor. J Immunol. 1985 Dec;135(6):3978–3987. [PubMed] [Google Scholar]
- Cikes M., Friberg S., Jr, Klein G. Progressive loss of H-2 antigens with concomitant increase of cell-surface antigen(s) determined by Moloney leukemia virus in cultured murine lymphomas. J Natl Cancer Inst. 1973 Feb;50(2):347–362. doi: 10.1093/jnci/50.2.347. [DOI] [PubMed] [Google Scholar]
- Colotta F., Polentarutti N., Bersani L., Poli G., Mantovani A. Rapid killing of actinomycin D-treated tumor cells by mononuclear phagocytes: characterization of effector cells in mice. J Leukoc Biol. 1986 Feb;39(2):205–221. doi: 10.1002/jlb.39.2.205. [DOI] [PubMed] [Google Scholar]
- DUNN T. B., POTTER M. A transplantable mast-cell neoplasm in the mouse. J Natl Cancer Inst. 1957 Apr;18(4):587–601. [PubMed] [Google Scholar]
- DeLustro F., Haskill J. S. In situ cytotoxic T cells in a methylcholanthrene-induced tumor. J Immunol. 1978 Sep;121(3):1007–1009. [PubMed] [Google Scholar]
- Eremin O., Coombs R. R., Ashby J. Lymphocytes infiltrating human breast cancers lack K-cell activity and show low levels of NK-cell activity. Br J Cancer. 1981 Aug;44(2):166–176. doi: 10.1038/bjc.1981.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferry B. L., Flannery G. R., Robins R. A., Lawry J., Baldwin R. W. Phenotype of cytotoxic effector cells infiltrating a transplanted, chemically induced rat sarcoma. Immunology. 1984 Oct;53(2):243–250. [PMC free article] [PubMed] [Google Scholar]
- Golstein P., Luciani M. F., Wagner H., Röllinghoff M. Mouse T cell-mediated cytolysis specifically triggered by cytophilic xenogeneic serum determinants: a caveat for the interpretation of experiments done under "syngeneic" conditions. J Immunol. 1978 Dec;121(6):2533–2538. [PubMed] [Google Scholar]
- Kubota K. Association of serum beta 2-microglobulin with H-2 class I heavy chains on the surface of mouse cells in culture. J Immunol. 1984 Dec;133(6):3203–3210. [PubMed] [Google Scholar]
- Lattime E. C., Pecoraro G. A., Cuttito M. J., Stutman O. Murine non-lymphoid tumors are lysed by a combination of NK and NC cells. Int J Cancer. 1983 Oct 15;32(4):523–528. doi: 10.1002/ijc.2910320421. [DOI] [PubMed] [Google Scholar]
- Lattime E. C., Pecoraro G., Stutman O. Natural cytotoxic cells against solid tumors in mice. IV. Natural cytotoxic (NC) cells are not activated natural killer (NK) cells. Int J Cancer. 1982 Oct 15;30(4):471–477. doi: 10.1002/ijc.2910300414. [DOI] [PubMed] [Google Scholar]
- Lord E. M., Burkhardt G. Assessment of in situ host immunity to syngeneic tumors utilizing the multicellular spheroid model. Cell Immunol. 1984 May;85(2):340–350. doi: 10.1016/0008-8749(84)90248-x. [DOI] [PubMed] [Google Scholar]
- Lord E. M. Comparison of in situ and peripheral host immunity to syngeneic tumours employing the multicellular spheroid model. Br J Cancer Suppl. 1980 Apr;4:123–127. [PMC free article] [PubMed] [Google Scholar]
- Lord E. M., Keng P. C. Methods for using centrifugal elutriation to separate malignant and lymphoid cell populations. J Immunol Methods. 1984 Mar 30;68(1-2):147–155. doi: 10.1016/0022-1759(84)90145-5. [DOI] [PubMed] [Google Scholar]
- Lord E. M., Penney D. P., Sutherland R. M., Cooper R. A., Jr Morphological and functional characteristics of cells infiltrating and destroying tumor multicellular spheroids in vivo. Virchows Arch B Cell Pathol Incl Mol Pathol. 1979 Oct;31(2):103–116. doi: 10.1007/BF02889928. [DOI] [PubMed] [Google Scholar]
- MacDonald H. R., Sordat B. The multicellular tumor spheroid: a quantitative model for studies of in situ immunity. Contemp Top Immunobiol. 1980;10:317–342. doi: 10.1007/978-1-4684-3677-8_15. [DOI] [PubMed] [Google Scholar]
- McKinnon K. P., Chen A. R., Argov S., Lane B. C., Koren H. S. Cytolysis of actinomycin D-treated target cells by cell-free supernatants from human monocytes. Immunobiology. 1986 Mar;171(1-2):27–44. doi: 10.1016/S0171-2985(86)80015-8. [DOI] [PubMed] [Google Scholar]
- Ortaldo J. R., Mason L. H., Mathieson B. J., Liang S. M., Flick D. A., Herberman R. B. Mediation of mouse natural cytotoxic activity by tumour necrosis factor. Nature. 1986 Jun 12;321(6071):700–702. doi: 10.1038/321700a0. [DOI] [PubMed] [Google Scholar]
- Raulet D. H., Gottlieb P. D., Bevan M. J. Fractionation of lymphocyte populations with monoclonal antibodies specific for LYT-2.2 and LYT-3.1. J Immunol. 1980 Sep;125(3):1136–1143. [PubMed] [Google Scholar]
- Rockwell S. C., Kallman R. F., Fajardo L. F. Characteristics of a serially transplanted mouse mammary tumor and its tissue-culture-adapted derivative. J Natl Cancer Inst. 1972 Sep;49(3):735–749. [PubMed] [Google Scholar]
- Röllinghoff M., Warner N. L. Specificity of in vivo tumor rejection assessed by mixing immune spleen cells with target and unrelated tumor cells. Proc Soc Exp Biol Med. 1973 Dec;144(3):813–818. doi: 10.3181/00379727-144-37688. [DOI] [PubMed] [Google Scholar]
- Sutherland R. M., McCredie J. A., Inch W. R. Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J Natl Cancer Inst. 1971 Jan;46(1):113–120. [PubMed] [Google Scholar]
- Twentyman P. R., Brown J. M., Gray J. W., Franko A. J., Scoles M. A., Kallman R. F. A new mouse tumor model system (RIF-1) for comparison of end-point studies. J Natl Cancer Inst. 1980 Mar;64(3):595–604. [PubMed] [Google Scholar]
- Tötterman T. H., Parthenais E., Häyry P., Timonen T., Saksela E. Cytological and functional analysis of inflammatory infiltrates in human malignant tumors. III. Further functional investigations using cultured autochthonous tumor cell lines and freeze-thawed infiltrating inflammatory cells. Cell Immunol. 1980 Sep 15;55(1):219–226. doi: 10.1016/0008-8749(80)90153-7. [DOI] [PubMed] [Google Scholar]
- Wilson K. M., Lord E. M. Effects of radiation on host-tumor interactions using the multicellular tumor spheroid model. Cancer Immunol Immunother. 1986;23(1):20–24. doi: 10.1007/BF00205550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yuhas J. M., Pazmino N. H., Proctor J. O., Toya R. E. A direct relationship between immune competence and the subcutaneous growth rate of a malignant murine lung tumor. Cancer Res. 1974 Apr;34(4):722–728. [PubMed] [Google Scholar]
