Skip to main content
International Journal of Experimental Pathology logoLink to International Journal of Experimental Pathology
. 1994 Apr;75(2):131–146.

Fat-storing cells and myofibroblasts are involved in the initial phase of carbon tetrachloride-induced hepatic fibrosis in BN/BiRij rats.

W F Seifert 1, P J Roholl 1, B Blauw 1, F van der Ham 1, C F van Thiel-De Ruiter 1, I Seifert-Bock 1, A Bosma 1, D L Knook 1, A Brouwer 1
PMCID: PMC2002098  PMID: 8199005

Abstract

This study on the appearance, distribution and kinetics of fibroblast-like cells (fat-storing cells, transitional cells, myofibroblasts and fibroblasts) after CCl4-treatment was undertaken to delineate further the respective roles of these cell types in liver fibrogenesis. The different cell types were distinguished on the basis of their immunophenotypic pattern with a combination of marker antibodies and on the basis of ultrastructural characteristics. Combined staining for alpha-smooth muscle actin (sma) and desmin (Des) revealed perisinusoidal fat-storing cells (FSC) as d+ sma- and myofibroblasts around the central veins of the normal rat liver as d+ sma+. During the initial phase of CCl4-induced hepatic fibrosis (week 1 and 2), the number of d+ sma+ cells increased in the degenerating area around the central veins and d+ sma+ cells appeared in the very thin fibrotic septa at week 2. Ultrastructural examination of the affected central areas showed the presence of myofibroblasts. These sma+ cells proliferated, as shown by double staining for bromodeoxyuridine (BrdU) and sma. In degenerating parenchymal areas, d+ sma- FSC were present. The FSC in the perisinusoidal space of areas which were not affected by CCl4 intoxification, remained d+ sma-. These immunostaining findings support the electron microscopical results, which show the presence of cells with the typical ultrastructural characteristics of FSC in both the degenerating areas and the perisinusoidal space of unaffected areas. After one week of CCl4-treatment, enhanced deposition of procollagen type III was observed around the central veins. Enhanced deposition of collagen type IV was seen subendothelially along the sinusoids, notably in degenerating parenchymal areas where the septa were later formed. FSC appear to be the principal source of collagen type IV during fibrogenesis. These observations further support and specify the role of FSC in early fibrogenesis. With the progression of the CCl4-induced fibrosis, d+ sma+ myofibroblasts remained localized in the fibrotic septa, but now along their outer edge. The majority of the cells in the septa were formed by d- sma- cells indicating a prominent role of fibroblasts in the septal formation. Septal fibroblasts are not only likely to produce matrix components, but also were shown to degrade collagen, as evidenced by the increased number of collagen-containing vacuoles during the course of fibrosis. In conclusion, myofibroblasts and FSC appear to be the main cell types involved in the initial phase of liver fibrogenesis induced by CCl4. Both myofibroblasts and FSC divide and transform.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
131

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballardini G., Degli Esposti S., Bianchi F. B., de Giorgi L. B., Faccani A., Biolchini L., Busachi C. A., Pisi E. Correlation between Ito cells and fibrogenesis in an experimental model of hepatic fibrosis. A sequential stereological study. Liver. 1983 Feb;3(1):58–63. doi: 10.1111/j.1600-0676.1983.tb00850.x. [DOI] [PubMed] [Google Scholar]
  2. Ballardini G., Fallani M., Biagini G., Bianchi F. B., Pisi E. Desmin and actin in the identification of Ito cells and in monitoring their evolution to myofibroblasts in experimental liver fibrosis. Virchows Arch B Cell Pathol Incl Mol Pathol. 1988;56(1):45–49. doi: 10.1007/BF02890000. [DOI] [PubMed] [Google Scholar]
  3. Chojkier M., Lyche K. D., Filip M. Increased production of collagen in vivo by hepatocytes and nonparenchymal cells in rats with carbon tetrachloride-induced hepatic fibrosis. Hepatology. 1988 Jul-Aug;8(4):808–814. doi: 10.1002/hep.1840080419. [DOI] [PubMed] [Google Scholar]
  4. Cordell J. L., Falini B., Erber W. N., Ghosh A. K., Abdulaziz Z., MacDonald S., Pulford K. A., Stein H., Mason D. Y. Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes). J Histochem Cytochem. 1984 Feb;32(2):219–229. doi: 10.1177/32.2.6198355. [DOI] [PubMed] [Google Scholar]
  5. Duijvestijn A. M., van Goor H., Klatter F., Majoor G. D., van Bussel E., van Breda Vriesman P. J. Antibodies defining rat endothelial cells: RECA-1, a pan-endothelial cell-specific monoclonal antibody. Lab Invest. 1992 Apr;66(4):459–466. [PubMed] [Google Scholar]
  6. Enzan H. Proliferation of Ito cells (fat-storing cells) in acute carbon tetrachloride liver injury. A light and electron microscopic autoradiographic study. Acta Pathol Jpn. 1985 Nov;35(6):1301–1308. doi: 10.1111/j.1440-1827.1985.tb01429.x. [DOI] [PubMed] [Google Scholar]
  7. Friedman S. L., Roll F. J., Boyles J., Bissell D. M. Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8681–8685. doi: 10.1073/pnas.82.24.8681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hendriks H. F., Brouwer A., Knook D. L. The role of hepatic fat-storing (stellate) cells in retinoid metabolism. Hepatology. 1987 Nov-Dec;7(6):1368–1371. doi: 10.1002/hep.1840070630. [DOI] [PubMed] [Google Scholar]
  9. Herbst H., Milani S., Schuppan D., Stein H. Temporal and spatial patterns of proto-oncogene expression at early stages of toxic liver injury in the rat. Lab Invest. 1991 Sep;65(3):324–333. [PubMed] [Google Scholar]
  10. Hollander C. F. Current experience using the laboratory rat in aging studies. Lab Anim Sci. 1976 Apr;26(2 Pt 2):320–328. [PubMed] [Google Scholar]
  11. Horn T., Junge J., Christoffersen P. Early alcoholic liver injury. Activation of lipocytes in acinar zone 3 and correlation to degree of collagen formation in the Disse space. J Hepatol. 1986;3(3):333–340. doi: 10.1016/s0168-8278(86)80486-x. [DOI] [PubMed] [Google Scholar]
  12. Kent G., Gay S., Inouye T., Bahu R., Minick O. T., Popper H. Vitamin A-containing lipocytes and formation of type III collagen in liver injury. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3719–3722. doi: 10.1073/pnas.73.10.3719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mak K. M., Lieber C. S. Lipocytes and transitional cells in alcoholic liver disease: a morphometric study. Hepatology. 1988 Sep-Oct;8(5):1027–1033. doi: 10.1002/hep.1840080508. [DOI] [PubMed] [Google Scholar]
  14. Martinez-Hernandez A. The hepatic extracellular matrix. II. Electron immunohistochemical studies in rats with CCl4-induced cirrhosis. Lab Invest. 1985 Aug;53(2):166–186. [PubMed] [Google Scholar]
  15. McGee J. O., Patrick R. S. The role of perisinusoidal cells in hepatic fibrogenesis. An electron microscopic study of acute carbon tetrachloride liver injury. Lab Invest. 1972 Apr;26(4):429–440. [PubMed] [Google Scholar]
  16. Milani S., Herbst H., Schuppan D., Hahn E. G., Stein H. In situ hybridization for procollagen types I, III and IV mRNA in normal and fibrotic rat liver: evidence for predominant expression in nonparenchymal liver cells. Hepatology. 1989 Jul;10(1):84–92. doi: 10.1002/hep.1840100117. [DOI] [PubMed] [Google Scholar]
  17. RUBIN E., HUTTERER F., POPPER H. Cell proliferation and fiber formation in chronic carbon tetrachloride intoxication. A morphologic and chemical study. Am J Pathol. 1963 Jun;42:715–728. [PMC free article] [PubMed] [Google Scholar]
  18. Ramaekers F. C., Puts J. J., Moesker O., Kant A., Huysmans A., Haag D., Jap P. H., Herman C. J., Vooijs G. P. Antibodies to intermediate filament proteins in the immunohistochemical identification of human tumours: an overview. Histochem J. 1983 Jul;15(7):691–713. doi: 10.1007/BF01002988. [DOI] [PubMed] [Google Scholar]
  19. Rappaport A. M., MacPhee P. J., Fisher M. M., Phillips M. J. The scarring of the liver acini (Cirrhosis). Tridimensional and microcirculatory considerations. Virchows Arch A Pathol Anat Histopathol. 1983;402(2):107–137. doi: 10.1007/BF00695054. [DOI] [PubMed] [Google Scholar]
  20. Roholl P. J., Prinsen I., Rademakers L. P., Hsu S. M., Van Unnik J. A. Two cell lines with epithelial cell-like characteristics established from malignant fibrous histiocytomas. Cancer. 1991 Nov 1;68(9):1963–1972. doi: 10.1002/1097-0142(19911101)68:9<1963::aid-cncr2820680920>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
  21. Schuppan D., Dumont J. M., Kim K. Y., Hennings G., Hahn E. G. Serum concentration of the aminoterminal procollagen type III peptide in the rat reflects early formation of connective tissue in experimental liver cirrhosis. J Hepatol. 1986;3(1):27–37. doi: 10.1016/s0168-8278(86)80142-8. [DOI] [PubMed] [Google Scholar]
  22. Schutte B., Reynders M. M., Bosman F. T., Blijham G. H. Studies with anti-bromodeoxyuridine antibodies: II. Simultaneous immunocytochemical detection of antigen expression and DNA synthesis by in vivo labeling of mouse intestinal mucosa. J Histochem Cytochem. 1987 Mar;35(3):371–374. doi: 10.1177/35.3.3546484. [DOI] [PubMed] [Google Scholar]
  23. Seyer J. M. Interstitial collagen polymorphism in rat liver with CCl4-induced cirrhosis. Biochim Biophys Acta. 1980 May 22;629(3):490–498. doi: 10.1016/0304-4165(80)90154-3. [DOI] [PubMed] [Google Scholar]
  24. Skalli O., Ropraz P., Trzeciak A., Benzonana G., Gillessen D., Gabbiani G. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol. 1986 Dec;103(6 Pt 2):2787–2796. doi: 10.1083/jcb.103.6.2787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Skalli O., Schürch W., Seemayer T., Lagacé R., Montandon D., Pittet B., Gabbiani G. Myofibroblasts from diverse pathologic settings are heterogeneous in their content of actin isoforms and intermediate filament proteins. Lab Invest. 1989 Feb;60(2):275–285. [PubMed] [Google Scholar]
  26. Takahara T., Kojima T., Miyabayashi C., Inoue K., Sasaki H., Muragaki Y., Ooshima A. Collagen production in fat-storing cells after carbon tetrachloride intoxication in the rat. Immunoelectron microscopic observation of type I, type III collagens, and prolyl hydroxylase. Lab Invest. 1988 Oct;59(4):509–521. [PubMed] [Google Scholar]
  27. Takase S., Leo M. A., Nouchi T., Lieber C. S. Desmin distinguishes cultured fat-storing cells from myofibroblasts, smooth muscle cells and fibroblasts in the rat. J Hepatol. 1988 Jun;6(3):267–276. doi: 10.1016/s0168-8278(88)80042-4. [DOI] [PubMed] [Google Scholar]
  28. Visser R., van der Beek J. M., Havenith M. G., Cleutjens J. P., Bosman F. T. Immunocytochemical detection of basement membrane antigens in the histopathological evaluation of laryngeal dysplasia and neoplasia. Histopathology. 1986 Feb;10(2):171–180. doi: 10.1111/j.1365-2559.1986.tb02472.x. [DOI] [PubMed] [Google Scholar]
  29. Yokoi Y., Namihisa T., Kuroda H., Komatsu I., Miyazaki A., Watanabe S., Usui K. Immunocytochemical detection of desmin in fat-storing cells (Ito cells). Hepatology. 1984 Jul-Aug;4(4):709–714. doi: 10.1002/hep.1840040425. [DOI] [PubMed] [Google Scholar]
  30. Yokoi Y., Namihisa T., Matsuzaki K., Miyazaki A., Yamaguchi Y. Distribution of Ito cells in experimental hepatic fibrosis. Liver. 1988 Feb;8(1):48–52. doi: 10.1111/j.1600-0676.1988.tb00966.x. [DOI] [PubMed] [Google Scholar]

Articles from International Journal of Experimental Pathology are provided here courtesy of Wiley

RESOURCES