Abstract
Dietary copper deficiency is known to affect metabolism of neutral lipids, phospholipids, prostaglandins, Cu-Zn superoxide dismutase and crosslinks of connective tissues. To investigate the effects of copper deficiency on lung ultrastructure, dietary copper deficiency was induced by feeding female guinea-pigs a diet marginally deficient in copper (0.8 microgram Cu/g diet) and compared with those fed a diet sufficient in copper (5.8 micrograms Cu/g diet). After 10 months on the diets, at age 340 days, animals were killed and the lungs removed and processed for electron microscopy to study the changes in cellular morphology. Type II epithelial cells in lung alveoli of copper deficient guinea-pigs, revealed larger lamellar bodies, in comparison with lungs of copper supplemented guinea-pigs (2.1 +/- 0.67 vs 1.35 +/- 0.47 microns). Fusion of lamellar bodies had occurred. Lipid droplets were found in the cytoplasm, which, in 20% of these cells, was as a single large lipid droplet approximately 10 microns in diameter. Features of the bronchiolar Clara cells in response to copper deficiency included the formation of packed tubular structures, 50 nm diameter. These tubules resembled smooth endoplasmic reticulums, and occupied 35.6% of the cell profiles by stereologic analysis. Clara cells from copper deficient guinea-pigs also contained many uniform, hexagonal crystal structures, in greater concentration than reported previously. Residual macrophages and monocytes observed in the capillaries contained giant lipid inclusions, which were stained by Sudan Black, indicative of neutral lipids. In this study, we suggest that perturbations in protein, lipid and membrane metabolism resulting from dietary copper deficiency in the guinea-pig may have altered the synthesis or degradation of lipid and protein components of lung cells or prevented their normal secretion into the airways or extracellular spaces.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Belinsky S. A., Foley J. F., White C. M., Anderson M. W., Maronpot R. R. Dose-response relationship between O6-methylguanine formation in Clara cells and induction of pulmonary neoplasia in the rat by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res. 1990 Jun 15;50(12):3772–3780. [PubMed] [Google Scholar]
- Buckingham K., Heng-Khoo C. S., Dubick M., Lefevre M., Cross C., Julian L., Rucker R. Copper deficiency and elastin metabolism in avian lung. Proc Soc Exp Biol Med. 1981 Feb;166(2):310–319. doi: 10.3181/00379727-166-41066. [DOI] [PubMed] [Google Scholar]
- Carr T. P., Lei K. Y. In vivo apoprotein catabolism of high density lipoproteins in copper-deficient, hypercholesterolemic rats. Proc Soc Exp Biol Med. 1989 Sep;191(4):370–376. doi: 10.3181/00379727-191-42935. [DOI] [PubMed] [Google Scholar]
- Chi E. Y., Lagunoff D., Koehler J. K. Abnormally large lamellar bodies in type II pneumocytes in Chediak-Higashi syndrome in beige mice. Lab Invest. 1976 Feb;34(2):166–173. [PubMed] [Google Scholar]
- Chi E. Y., Lagunoff D. Linear arrays of intramembranous particles in pulmonary tubular myelin. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6225–6229. doi: 10.1073/pnas.75.12.6225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clements J. A. Functions of the alveolar lining. Am Rev Respir Dis. 1977 Jun;115(6 Pt 2):67–71. doi: 10.1164/arrd.1977.115.S.67. [DOI] [PubMed] [Google Scholar]
- Cunnane S. C. Modulation of long chain fatty acid unsaturation by dietary copper. Adv Exp Med Biol. 1989;258:183–195. doi: 10.1007/978-1-4613-0537-8_16. [DOI] [PubMed] [Google Scholar]
- Evans M. J., Cabral-Anderson L. J., Freeman G. Role of the Clara cell in renewal of the bronchiolar epithelium. Lab Invest. 1978 Jun;38(6):648–653. [PubMed] [Google Scholar]
- Gail D. B., Lenfant C. J. Cells of the lung: biology and clinical implications. Am Rev Respir Dis. 1983 Mar;127(3):366–387. doi: 10.1164/arrd.1983.127.3.366. [DOI] [PubMed] [Google Scholar]
- Gallagher C. H., Reeve V. E. Copper deficiency in the rat. Effect of synthesis of phospholipids. Aust J Exp Biol Med Sci. 1971 Feb;49(1):21–31. doi: 10.1038/icb.1971.3. [DOI] [PubMed] [Google Scholar]
- Hammel I., Lagunoff D., Bauza M., Chi E. Periodic, multimodal distribution of granule volumes in mast cells. Cell Tissue Res. 1983;228(1):51–59. doi: 10.1007/BF00206264. [DOI] [PubMed] [Google Scholar]
- Hawgood S., Clements J. A. Pulmonary surfactant and its apoproteins. J Clin Invest. 1990 Jul;86(1):1–6. doi: 10.1172/JCI114670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henderson W. R., Chi E. Y. Ultrastructural characterization and morphometric analysis of human eosinophil degranulation. J Cell Sci. 1985 Feb;73:33–48. doi: 10.1242/jcs.73.1.33. [DOI] [PubMed] [Google Scholar]
- King R. J. Pulmonary surfactant. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jul;53(1):1–8. doi: 10.1152/jappl.1982.53.1.1. [DOI] [PubMed] [Google Scholar]
- Kury P. G., McConnell M. Regulation of Membrane Flexibility in Human Erythrocytes. Biochemistry. 1975 Jul;14(13):2798–2803. doi: 10.1021/bi00684a002. [DOI] [PubMed] [Google Scholar]
- Lei K. Y., Rosenstein F., Shi F., Hassel C. A., Carr T. P., Zhang J. Alterations in lipid composition and fluidity of liver plasma membranes in copper-deficient rats. Proc Soc Exp Biol Med. 1988 Jul;188(3):335–341. doi: 10.3181/00379727-188-42743. [DOI] [PubMed] [Google Scholar]
- Mitchell L. L., Allen K. G., Mathias M. M. Copper deficiency depresses rat aortae superoxide dismutase activity and prostacyclin synthesis. Prostaglandins. 1988 Jun;35(6):977–986. doi: 10.1016/0090-6980(88)90121-9. [DOI] [PubMed] [Google Scholar]
- O'Dell B. L., Kilburn K. H., McKenzie W. N., Thurston R. J. The lung of the copper-deficient rat. A model for developmental pulmonary emphysema. Am J Pathol. 1978 Jun;91(3):413–432. [PMC free article] [PubMed] [Google Scholar]
- Plopper C. G., Mariassy A. T., Hill L. H. Ultrastructure of the nonciliated bronchiolar epithelial (Clara) cell of mammalian lung: I. A comparison of rabbit, guinea pig, rat, hamster, and mouse. Exp Lung Res. 1980 Jun;1(2):139–154. doi: 10.3109/01902148009069644. [DOI] [PubMed] [Google Scholar]
- Prohaska J. R. Biochemical changes in copper deficiency. J Nutr Biochem. 1990 Sep;1(9):452–461. doi: 10.1016/0955-2863(90)90080-5. [DOI] [PubMed] [Google Scholar]
- Prohaska J. R. Changes in Cu,Zn-superoxide dismutase, cytochrome c oxidase, glutathione peroxidase and glutathione transferase activities in copper-deficient mice and rats. J Nutr. 1991 Mar;121(3):355–363. doi: 10.1093/jn/121.3.355. [DOI] [PubMed] [Google Scholar]
- Richmond V., Stokstad E. L. Effect of ascorbic acid on guinea pig skin collagen synthesis. I. Total collagen. J Dent Res. 1969 Sep-Oct;48(5):863–871. doi: 10.1177/00220345690480054201. [DOI] [PubMed] [Google Scholar]
- Serabjit-Singh C. J., Nishio S. J., Philpot R. M., Plopper C. G. The distribution of cytochrome P-450 monooxygenase in cells of the rabbit lung: an ultrastructural immunocytochemical characterization. Mol Pharmacol. 1988 Mar;33(3):279–289. [PubMed] [Google Scholar]
- Soskel N. T., Watanabe S., Hammond E., Sandberg L. B., Renzetti A. D., Jr, Crapo J. D. A copper-deficient, zinc-supplemented diet produces emphysema in pigs. Am Rev Respir Dis. 1982 Aug;126(2):316–325. doi: 10.1164/arrd.1982.126.2.316. [DOI] [PubMed] [Google Scholar]
- Weaver F. C. Progressive changes in pancreatic vasculature accompanying copper deficiency-induced glandular atrophy. Int J Pancreatol. 1989 Mar;4(2):175–186. doi: 10.1007/BF02931319. [DOI] [PubMed] [Google Scholar]
- Weller P. F. Human Eosinophil lysophospholipase. Methods Enzymol. 1988;163:31–43. doi: 10.1016/0076-6879(88)63005-9. [DOI] [PubMed] [Google Scholar]
- Widdicombe J. G., Pack R. J. The Clara cell. Eur J Respir Dis. 1982 May;63(3):202–220. [PubMed] [Google Scholar]
- Williams M. C., Benson B. J. Immunocytochemical localization and identification of the major surfactant protein in adult rat lung. J Histochem Cytochem. 1981 Feb;29(2):291–305. doi: 10.1177/29.2.7019304. [DOI] [PubMed] [Google Scholar]
- el-Hashimi W. Charcot-Leyden crystals. Formation from primate and lack of formation from nonprimate eosinophils. Am J Pathol. 1971 Nov;65(2):311–324. [PMC free article] [PubMed] [Google Scholar]






