Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1987 Aug;56(2):97–102. doi: 10.1038/bjc.1987.164

Alloimmune cells consume interleukin-2 and competitively inhibit the anti-tumour effects of interleukin-2.

A M Eggermont 1, E P Steller 1, W Matthews 1, P H Sugarbaker 1
PMCID: PMC2002132  PMID: 2444243

Abstract

Adoptive immunotherapy with lymphokine activated killer (LAK) cells and recombinant interleukin-2 (IL-2) is successful in a variety of tumour models in both the normal and the immunocompromised mouse. We investigated the effects of an immune response to an allogeneic challenge on the metabolism of IL-2. Serum IL-2 levels at different time points after the administration of 20,000 units of IL-2 intraperitoneally were 2-4 fold higher in normal mice than in recently alloimmunized mice. In an intraperitoneal tumour model the alloimmunization of mice with allogeneic P815 tumour cells or splenocytes IP prior to the intraperitoneal inoculation of syngeneic tumour significantly diminished the anti-tumour effects of IL-2 and LAK cell immunotherapy in 7 consecutive experiments. High doses of IL-2 or pretreatment with cyclophosphamide restored the efficacy of IL-2 and LAK cell immunotherapy. From these results we hypothesize that T cells, activated by the allogeneic challenge, consume IL-2 and thus inhibit the effects of IL-2 and LAK cell treatment by competitive inhibition. LAK cell activity with reduced levels of IL-2 cannot be maintained and anti-tumour effects are lost. High doses of IL-2 were shown to overcome the competition for IL-2. Alternatively activated T-cells could be eliminated by pretreatment with cyclophosphamide and anti-tumour effects restored. These results are important in that they provide an alternative explanation as to the mechanism of non-specific cell mediated suppression and may in part explain the failure of some cancer patients to respond to treatment with IL-2 plus LAK immunotherapy.

Full text

PDF
97

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrew M. E., Braciale V. L., Braciale T. J. Regulation of interleukin 2 receptor expression on murine cytotoxic T lymphocyte clones. J Immunol. 1984 Feb;132(2):839–844. [PubMed] [Google Scholar]
  2. Andriole G. L., Mulé J. J., Hansen C. T., Linehan W. M., Rosenberg S. A. Evidence that lymphokine-activated killer cells and natural killer cells are distinct based on an analysis of congenitally immunodeficient mice. J Immunol. 1985 Nov;135(5):2911–2913. [PubMed] [Google Scholar]
  3. Brooks C. G., Holscher M., Urdal D. Natural killer activity in cloned cytotoxic T lymphocytes: regulation by interleukin 2, interferon, and specific antigen. J Immunol. 1985 Aug;135(2):1145–1152. [PubMed] [Google Scholar]
  4. Burrows L., Tartter P. Effect of blood transfusions on colonic malignancy recurrent rate. Lancet. 1982 Sep 18;2(8299):662–662. doi: 10.1016/s0140-6736(82)92764-7. [DOI] [PubMed] [Google Scholar]
  5. Cheever M. A., Greenberg P. D., Irle C., Thompson J. A., Urdal D. L., Mochizuki D. Y., Henney C. S., Gillis S. Interleukin 2 administered in vivo induces the growth of cultured T cells in vivo. J Immunol. 1984 May;132(5):2259–2265. [PubMed] [Google Scholar]
  6. D'Amore P. J., Golub S. H. Suppression of human NK cell cytotoxicity by an MLC-Generated cell population. J Immunol. 1985 Jan;134(1):272–279. [PubMed] [Google Scholar]
  7. Ettinghausen S. E., Lipford E. H., 3rd, Mulé J. J., Rosenberg S. A. Recombinant interleukin 2 stimulates in vivo proliferation of adoptively transferred lymphokine-activated killer (LAK) cells. J Immunol. 1985 Nov;135(5):3623–3635. [PubMed] [Google Scholar]
  8. Ettinghausen S. E., Lipford E. H., 3rd, Mulé J. J., Rosenberg S. A. Systemic administration of recombinant interleukin 2 stimulates in vivo lymphoid cell proliferation in tissues. J Immunol. 1985 Aug;135(2):1488–1497. [PubMed] [Google Scholar]
  9. Fink P. J., Rammensee H. G., Benedetto J. D., Staerz U. D., Lefrancois L., Bevan M. J. Studies on the mechanism of suppression of primary cytotoxic responses by cloned cytotoxic T lymphocytes. J Immunol. 1984 Oct;133(4):1769–1774. [PubMed] [Google Scholar]
  10. Glaser M. Regulation of specific cell-mediated cytotoxic response against SV40-induced tumor associated antigens by depletion of suppressor T cells with cyclophosphamide in mice. J Exp Med. 1979 Mar 1;149(3):774–779. doi: 10.1084/jem.149.3.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Günther J., Haas W., Von Boehmer H. Suppression of T cell responses through competition for T cell growth factor (interleukin 2). Eur J Immunol. 1982 Mar;12(3):247–249. doi: 10.1002/eji.1830120315. [DOI] [PubMed] [Google Scholar]
  12. Hardt C., Röllinghoff M., Pfizenmaier K., Mosmann H., Wagner H. Lyt-23+ cyclophosphamide-sensitive T cells regulate the activity of an interleukin 2 inhibitor in vivo. J Exp Med. 1981 Aug 1;154(2):262–274. doi: 10.1084/jem.154.2.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hefeneider S. H., Conlon P. J., Henney C. S., Gillis S. In vivo interleukin 2 administration augments the generation of alloreactive cytolytic T lymphocytes and resident natural killer cells. J Immunol. 1983 Jan;130(1):222–227. [PubMed] [Google Scholar]
  14. Honda M., Chan C., Shevach E. M. Characterization and partial purification of a specific interleukin 2 inhibitor. J Immunol. 1985 Sep;135(3):1834–1839. [PubMed] [Google Scholar]
  15. Jacques Y., Le Mauff B., Godard A., Olive D., Moreau J. F., Soulillou J. P. Regulation of interleukin 2 receptor expression on a human cytotoxic T lymphocyte clone, synergism between alloantigenic stimulation and interleukin 2. J Immunol. 1986 Mar 1;136(5):1693–1699. [PubMed] [Google Scholar]
  16. Kitamura K., Nakauchi H., Koyasu S., Yahara I., Okumura K., Tada T. Characterization of an antigen-specific suppressive factor derived from a cloned suppressor effector T cell line. J Immunol. 1984 Sep;133(3):1371–1378. [PubMed] [Google Scholar]
  17. Kobayashi K., Allred C., Yoshida T. Mechanisms of suppressed cell-mediated immunity and impaired antigen-induced interleukin 2 production in granuloma-bearing mice. J Immunol. 1985 Nov;135(5):2996–3003. [PubMed] [Google Scholar]
  18. Lafreniere R., Rosenberg S. A. Successful immunotherapy of murine experimental hepatic metastases with lymphokine-activated killer cells and recombinant interleukin 2. Cancer Res. 1985 Aug;45(8):3735–3741. [PubMed] [Google Scholar]
  19. Lipkowitz S., Greene W. C., Rubin A. L., Novogrodsky A., Stenzel K. H. Expression of receptors for interleukin 2: Role in the commitment of T lymphocytes to proliferate. J Immunol. 1984 Jan;132(1):31–37. [PubMed] [Google Scholar]
  20. Lotze M. T., Robb R. J., Sharrow S. O., Frana L. W., Rosenberg S. A. Systemic administration of interleukin-2 in humans. J Biol Response Mod. 1984 Oct;3(5):475–482. [PubMed] [Google Scholar]
  21. Matory Y. L., Chang A. E., Lipford E. H., 3rd, Braziel R., Hyatt C. L., McDonald H. D., Rosenberg S. A. Toxicity of recombinant human interleukin-2 in rats following intravenous infusion. J Biol Response Mod. 1985 Aug;4(4):377–390. [PubMed] [Google Scholar]
  22. Mulé J. J., Shu S., Rosenberg S. A. The anti-tumor efficacy of lymphokine-activated killer cells and recombinant interleukin 2 in vivo. J Immunol. 1985 Jul;135(1):646–652. [PubMed] [Google Scholar]
  23. Mulé J. J., Shu S., Schwarz S. L., Rosenberg S. A. Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Science. 1984 Sep 28;225(4669):1487–1489. doi: 10.1126/science.6332379. [DOI] [PubMed] [Google Scholar]
  24. North R. J. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med. 1982 Apr 1;155(4):1063–1074. doi: 10.1084/jem.155.4.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. North R. J. The murine antitumor immune response and its therapeutic manipulation. Adv Immunol. 1984;35:89–155. doi: 10.1016/s0065-2776(08)60575-1. [DOI] [PubMed] [Google Scholar]
  26. Nowacki M. P., Szymendera J. J. The strongest prognostic factors in colorectal carcinoma. Surgicopathologic stage of disease and postoperative fever. Dis Colon Rectum. 1983 Apr;26(4):263–268. doi: 10.1007/BF02562495. [DOI] [PubMed] [Google Scholar]
  27. Opelz G., Terasaki P. I. Dominant effect of transfusions on kidney graft survival. Transplantation. 1980 Feb;29(2):153–158. doi: 10.1097/00007890-198002000-00013. [DOI] [PubMed] [Google Scholar]
  28. Orosz C. G., Ferguson R. M. Suppression of in vitro CML generation by alloactivated lymphocytes: analysis of antigen-nonspecific suppressive mechanisms. J Immunol. 1985 Jan;134(1):45–50. [PubMed] [Google Scholar]
  29. Palacios R., Möller G. T cell growth factor abrogates concanavalin A-induced suppressor cell function. J Exp Med. 1981 May 1;153(5):1360–1365. doi: 10.1084/jem.153.5.1360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Reed S. G., Inverso J. A., Roters S. B. Suppressed antibody responses to sheep erythrocytes in mice with chronic Trypanosoma cruzi infections are restored with interleukin 2. J Immunol. 1984 Dec;133(6):3333–3337. [PubMed] [Google Scholar]
  31. Rosenberg S. A., Grimm E. A., McGrogan M., Doyle M., Kawasaki E., Koths K., Mark D. F. Biological activity of recombinant human interleukin-2 produced in Escherichia coli. Science. 1984 Mar 30;223(4643):1412–1414. doi: 10.1126/science.6367046. [DOI] [PubMed] [Google Scholar]
  32. Rosenberg S. A., Lotze M. T., Muul L. M., Leitman S., Chang A. E., Ettinghausen S. E., Matory Y. L., Skibber J. M., Shiloni E., Vetto J. T. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med. 1985 Dec 5;313(23):1485–1492. doi: 10.1056/NEJM198512053132327. [DOI] [PubMed] [Google Scholar]
  33. Rosenberg S. A., Seipp C. A., White D. E., Wesley R. Perioperative blood transfusions are associated with increased rates of recurrence and decreased survival in patients with high-grade soft-tissue sarcomas of the extremities. J Clin Oncol. 1985 May;3(5):698–709. doi: 10.1200/JCO.1985.3.5.698. [DOI] [PubMed] [Google Scholar]
  34. Rosenberg S. A. The adoptive immunotherapy of cancer using the transfer of activated lymphoid cells and interleukin-2. Semin Oncol. 1986 Jun;13(2):200–206. [PubMed] [Google Scholar]
  35. Rubin L. A., Kurman C. C., Fritz M. E., Biddison W. E., Boutin B., Yarchoan R., Nelson D. L. Soluble interleukin 2 receptors are released from activated human lymphoid cells in vitro. J Immunol. 1985 Nov;135(5):3172–3177. [PubMed] [Google Scholar]
  36. Salomon D. R., Cohen D. J., Williams J. M., Carpenter C. B. T cell synergy in the primary MLR: proliferative kinetics, effector cell generation, and IL 2 production. J Immunol. 1984 Dec;133(6):3075–3083. [PubMed] [Google Scholar]
  37. Shapiro M. E., Kasper D. L., Zaleznik D. F., Spriggs S., Onderdonk A. B., Finberg R. W. Cellular control of abscess formation: role of T cells in the regulation of abscesses formed in response to Bacteroides fragilis. J Immunol. 1986 Jul 1;137(1):341–346. [PubMed] [Google Scholar]
  38. Susskind B. M., Merluzzi V. J., Faanes R. B., Palladino M. A., Choi Y. S. Regulatory mechanisms in cytotoxic T lymphocyte development. I. A suppressor T cell subset that regulates the proliferative stage of CTL development. J Immunol. 1983 Feb;130(2):527–532. [PubMed] [Google Scholar]
  39. Tartter P. I., Burrows L., Kirschner P. Perioperative blood transfusion adversely affects prognosis after resection of Stage I (subset N0) non-oat cell lung cancer. J Thorac Cardiovasc Surg. 1984 Nov;88(5 Pt 1):659–662. [PubMed] [Google Scholar]
  40. Truitt G. A., Rich R. R., Rich S. S. Suppression of cytotoxic lymphocyte responses in vitro by soluble products of alloantigen-activated spleen cells. J Immunol. 1978 Sep;121(3):1045–1051. [PubMed] [Google Scholar]
  41. Turk J. L., Parker D. Effect of cyclophosphamide on immunological control mechanisms. Immunol Rev. 1982;65:99–113. doi: 10.1111/j.1600-065x.1982.tb00429.x. [DOI] [PubMed] [Google Scholar]
  42. Turk J. L., Poulter L. W. Selective depletion of lymphoid tissue by cyclophosphamide. Clin Exp Immunol. 1972 Feb;10(2):285–296. [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES