Skip to main content
International Journal of Experimental Pathology logoLink to International Journal of Experimental Pathology
. 1993 Oct;74(5):501–509.

The induction of mitochondrial myopathy in the rat by feeding beta-guanidinopropionic acid and the reversibility of the induced mitochondrial lesions: a biochemical and ultrastructural investigation.

V De Tata 1, G Cavallini 1, M Pollera 1, Z Gori 1, E Bergamini 1
PMCID: PMC2002185  PMID: 8217785

Abstract

The long-lasting depletions of creatine phosphate induced by feeding rats with a beta-guanidinopropionic acid (GPA)-supplemented diet induces specific mitochondrial alterations in skeletal muscles very similar to those observed in human mitochondrial myopathies. The slow-twitch soleus muscle appears to be affected primarily, while the fast-twitch extensor digitorum longus is affected less severely and only after a longer period of treatment (6 months). Changes in the enzyme activities of glucose metabolism appear to be secondary and differ between the two muscles. Withdrawal of GPA from the diet after 2 months of treatment shows that both mitochondrial alterations and biochemical modification are reversible.

Full text

PDF
501

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bessman S. P., Carpenter C. L. The creatine-creatine phosphate energy shuttle. Annu Rev Biochem. 1985;54:831–862. doi: 10.1146/annurev.bi.54.070185.004151. [DOI] [PubMed] [Google Scholar]
  2. De Tata V., Gori Bergamini Z., Bergamini E. Changes of glycogen metabolism in phosphorylcreatine-depleted muscles taken from rats fed with beta-guanidine propionate. Arch Int Physiol Biochim. 1989 Feb;97(1):123–132. doi: 10.3109/13813458909075056. [DOI] [PubMed] [Google Scholar]
  3. ENNOR A. H., ROSENBERG H. The determination and distribution of phosphocreatine in animal tissues. Biochem J. 1952 Aug;51(5):606–610. doi: 10.1042/bj0510606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eppenberger-Eberhardt M., Riesinger I., Messerli M., Schwarb P., Müller M., Eppenberger H. M., Wallimann T. Adult rat cardiomyocytes cultured in creatine-deficient medium display large mitochondria with paracrystalline inclusions, enriched for creatine kinase. J Cell Biol. 1991 Apr;113(2):289–302. doi: 10.1083/jcb.113.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fitch C. D., Chevli R. Measurement of beta-guanidinopropionate and phosphorylated beta-guanidinopropionate in tissues. Anal Biochem. 1975 Sep;68(1):196–201. doi: 10.1016/0003-2697(75)90694-6. [DOI] [PubMed] [Google Scholar]
  6. Fitch C. D., Chevli R., Petrofsky J. S., Kopp S. J. Sustained isometric contraction of skeletal muscle depleted of phosphocreatine. Life Sci. 1978 Sep 25;23(12):1285–1291. doi: 10.1016/0024-3205(78)90507-6. [DOI] [PubMed] [Google Scholar]
  7. Fitch C. D., Jellinek M., Fitts R. H., Baldwin K. M., Holloszy J. O. Phosphorylated beta-guanidinopropionate as a substitute for phosphocreatine in rat muscle. Am J Physiol. 1975 Apr;228(4):1123–1125. doi: 10.1152/ajplegacy.1975.228.4.1123. [DOI] [PubMed] [Google Scholar]
  8. Fitch C. D., Jellinek M., Mueller E. J. Experimental depletion of creatine and phosphocreatine from skeletal muscle. J Biol Chem. 1974 Feb 25;249(4):1060–1063. [PubMed] [Google Scholar]
  9. Gori Z., De Tata V., Pollera M., Bergamini E. Mitochondrial myopathy in rats fed with a diet containing beta-guanidine propionic acid, an inhibitor of creatine entry in muscle cells. Br J Exp Pathol. 1988 Oct;69(5):639–650. [PMC free article] [PubMed] [Google Scholar]
  10. Griffiths G. R., Walker J. B. Accumulation of analgo of phosphocreatine in muscle of chicks fed 1-carboxymethyl-2-iminoimidazolidine (cyclocreatine). J Biol Chem. 1976 Apr 10;251(7):2049–2054. [PubMed] [Google Scholar]
  11. Hübner G., Grantzow R. Mitochondrial cardiomyopathy with involvement of skeletal muscles. Virchows Arch A Pathol Anat Histopathol. 1983;399(1):115–125. doi: 10.1007/BF00666223. [DOI] [PubMed] [Google Scholar]
  12. Laskowski M. B., Chevli R., Fitch C. D. Biochemical and ultrastructural changes in skeletal muscle induced by a creatine antagonist. Metabolism. 1981 Nov;30(11):1080–1085. doi: 10.1016/0026-0495(81)90051-2. [DOI] [PubMed] [Google Scholar]
  13. Mainwood G. W., Totosy De Zepetnek J. Post-tetanic responses in creatine-depleted rat EDL muscle. Muscle Nerve. 1985 Nov-Dec;8(9):774–782. doi: 10.1002/mus.880080906. [DOI] [PubMed] [Google Scholar]
  14. Meyer R. A., Brown T. R., Krilowicz B. L., Kushmerick M. J. Phosphagen and intracellular pH changes during contraction of creatine-depleted rat muscle. Am J Physiol. 1986 Feb;250(2 Pt 1):C264–C274. doi: 10.1152/ajpcell.1986.250.2.C264. [DOI] [PubMed] [Google Scholar]
  15. Ohira Y., Kanzaki M., Chen C. S. Intramitochondrial inclusions caused by depletion of creatine in rat skeletal muscles. Jpn J Physiol. 1988;38(2):159–166. doi: 10.2170/jjphysiol.38.159. [DOI] [PubMed] [Google Scholar]
  16. Petrofsky J. S., Fitch C. D. Contractile characteristics of skeletal muscles depleted of phosphocreatine. Pflugers Arch. 1980 Mar;384(2):123–129. doi: 10.1007/BF00584427. [DOI] [PubMed] [Google Scholar]
  17. Pette D. Metabolic heterogeneity of muscle fibres. J Exp Biol. 1985 Mar;115:179–189. doi: 10.1242/jeb.115.1.179. [DOI] [PubMed] [Google Scholar]
  18. Rowley G. L., Greenleaf A. L., Kenyon G. L. On the specificity of creatine kinase. New glycocyamines and glycocyamine analogs related to creatine. J Am Chem Soc. 1971 Oct 20;93(12):5542–5551. doi: 10.1021/ja00750a038. [DOI] [PubMed] [Google Scholar]
  19. Shields R. P., Whitehair C. K., Carrow R. E., Heusner W. W., Van Huss W. D. Skeletal muscle function and structure after depletion of creatine. Lab Invest. 1975 Aug;33(2):151–158. [PubMed] [Google Scholar]
  20. Shields R. P., Whitehair C. K. Muscle creatine: in vivo depletion by feeding beta-guanidinopropionic acid. Can J Biochem. 1973 Jul;51(7):1046–1049. doi: 10.1139/o73-136. [DOI] [PubMed] [Google Scholar]
  21. Shoubridge E. A., Challiss R. A., Hayes D. J., Radda G. K. Biochemical adaptation in the skeletal muscle of rats depleted of creatine with the substrate analogue beta-guanidinopropionic acid. Biochem J. 1985 Nov 15;232(1):125–131. doi: 10.1042/bj2320125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shoubridge E. A., Jeffry F. M., Keogh J. M., Radda G. K., Seymour A. M. Creatine kinase kinetics, ATP turnover, and cardiac performance in hearts depleted of creatine with the substrate analogue beta-guanidinopropionic acid. Biochim Biophys Acta. 1985 Oct 30;847(1):25–32. doi: 10.1016/0167-4889(85)90148-x. [DOI] [PubMed] [Google Scholar]
  23. Shoubridge E. A., Radda G. K. A 31P-nuclear magnetic resonance study of skeletal muscle metabolism in rats depleted of creatine with the analogue beta-guanidinopropionic acid. Biochim Biophys Acta. 1984 Sep 14;805(1):79–88. doi: 10.1016/0167-4889(84)90039-9. [DOI] [PubMed] [Google Scholar]
  24. Shoubridge E. A., Radda G. K. A gated 31P NMR study of tetanic contraction in rat muscle depleted of phosphocreatine. Am J Physiol. 1987 May;252(5 Pt 1):C532–C542. doi: 10.1152/ajpcell.1987.252.5.C532. [DOI] [PubMed] [Google Scholar]

Articles from International Journal of Experimental Pathology are provided here courtesy of Wiley

RESOURCES