Skip to main content
International Journal of Experimental Pathology logoLink to International Journal of Experimental Pathology
. 1994 Aug;75(4):295–304.

Suppression of development of glomerulonephritis in NZB x NZWF1 mice by persistent infection with lactic dehydrogenase virus: relations between intercellular adhesion molecule-1 expression on endothelial cells and leucocyte accumulation in glomeruli.

Y Kameyama 1, T Hayashi 1
PMCID: PMC2002235  PMID: 7947231

Abstract

The development of glomerulonephritis (GN) in autoimmune NZB x NZWF1 mice was suppressed by persistent lactic dehydrogenase virus (LDV) infection. In this study the expression of intercellular adhesion molecule-1 (ICAM-1) on endothelial cells in glomeruli was examined during the development of GN. ICAM-1 expression on endothelial cells preceded the accumulation of leucocytes within glomeruli. The uninfected mice exhibited an age-related and profound increase in ICAM-1 expression associated with the development of a GN as evidenced by deposits of IgG and C3. Uninfected mice also showed increased accumulation of leucocytes, such as polymorphonuclear leucocytes (PMNs), macrophages, T and CD4+ cells, which express the lymphocyte function-associated antigen-1 (LFA-1) within glomeruli during the development of GN. These changes were strongly suppressed by LDV infection. Our findings suggest that the expression of ICAM-1 in glomerular endothelial cells may, at least in part, contribute to the development of GN. Suppressed expression of ICAM-1 in LDV-infected mice may be responsible for the suppression of GN seen in these animals. Thus there may be a pathogenetic role for ICAM-1 expression and for intraglomerular accumulation of leucocytes, especially PMNs, which express LFA-1 in the development of GN.

Full text

PDF
295

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews B. S., Eisenberg R. A., Theofilopoulos A. N., Izui S., Wilson C. B., McConahey P. J., Murphy E. D., Roths J. B., Dixon F. J. Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med. 1978 Nov 1;148(5):1198–1215. doi: 10.1084/jem.148.5.1198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boyce N. W., Tipping P. G., Holdsworth S. R. Glomerular macrophages produce reactive oxygen species in experimental glomerulonephritis. Kidney Int. 1989 Mar;35(3):778–782. doi: 10.1038/ki.1989.52. [DOI] [PubMed] [Google Scholar]
  3. Brennan D. C., Jevnikar A. M., Takei F., Reubin-Kelley V. E. Mesangial cell accessory functions: mediation by intercellular adhesion molecule-1. Kidney Int. 1990 Dec;38(6):1039–1046. doi: 10.1038/ki.1990.310. [DOI] [PubMed] [Google Scholar]
  4. Davies M., Barrett A. J., Travis J., Sanders E., Coles G. A. The degradation of human glomerular basement membrane with purified lysosomal proteinases: evidence for the pathogenic role of the polymorphonuclear leucocyte in glomerulonephritis. Clin Sci Mol Med. 1978 Mar;54(3):233–240. doi: 10.1042/cs0540233. [DOI] [PubMed] [Google Scholar]
  5. Diamond J. R. The role of reactive oxygen species in animal models of glomerular disease. Am J Kidney Dis. 1992 Mar;19(3):292–300. doi: 10.1016/s0272-6386(13)80013-3. [DOI] [PubMed] [Google Scholar]
  6. Duncan M. R., Berman B. Gamma interferon is the lymphokine and beta interferon the monokine responsible for inhibition of fibroblast collagen production and late but not early fibroblast proliferation. J Exp Med. 1985 Aug 1;162(2):516–527. doi: 10.1084/jem.162.2.516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HELYER B. J., HOWIE J. B. Renal disease associated with positive lupus erythematosus tests in a cross-bred strain of mice. Nature. 1963 Jan 12;197:197–197. doi: 10.1038/197197a0. [DOI] [PubMed] [Google Scholar]
  8. Hayashi T., Iwata H., Hasegawa T., Ozaki M., Yamamoto H., Onodera T. Decrease in neutrophil migration induced by endotoxin and suppression of interleukin-1 production by macrophages in lactic dehydrogenase virus-infected mice. J Comp Pathol. 1991 Feb;104(2):161–170. doi: 10.1016/s0021-9975(08)80099-0. [DOI] [PubMed] [Google Scholar]
  9. Hayashi T., Mori I., Yamamoto H. Lactic dehydrogenase virus infection prevents development of anti-nuclear antibody in (NZB x NZW)F1 mice; role of prostaglandin E2 and macrophage Ia antigen expression. Int J Exp Pathol. 1992 Oct;73(5):593–601. [PMC free article] [PubMed] [Google Scholar]
  10. Hayashi T., Noguchi Y., Kameyama Y. Suppression of development of anti-nuclear antibody and glomerulonephritis in NZB x NZWF1 mice by persistent infection with lactic dehydrogenase virus: possible involvement of superoxide anion as a progressive effector. Int J Exp Pathol. 1993 Dec;74(6):553–560. [PMC free article] [PubMed] [Google Scholar]
  11. Hayashi T., Salata K., Kingman A., Notkins A. L. Regulation of enzyme levels in the blood. Influence of environmental and genetic factors on enzyme clearance. Am J Pathol. 1988 Sep;132(3):503–511. [PMC free article] [PubMed] [Google Scholar]
  12. Inada T., Mims C. A. Pattern of infection and selective loss of Ia positive cells in suckling and adult mice inoculated with lactic dehydrogenase virus. Arch Virol. 1985;86(3-4):151–165. doi: 10.1007/BF01309821. [DOI] [PubMed] [Google Scholar]
  13. Izui S., McConahey P. J., Theofilopoulos A. N., Dixon F. J. Association of circulating retroviral gp70-anti-gp70 immune complexes with murine systemic lupus erythematosus. J Exp Med. 1979 May 1;149(5):1099–1116. doi: 10.1084/jem.149.5.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kawasaki K., Yaoita E., Yamamoto T., Tamatani T., Miyasaka M., Kihara I. Antibodies against intercellular adhesion molecule-1 and lymphocyte function-associated antigen-1 prevent glomerular injury in rat experimental crescentic glomerulonephritis. J Immunol. 1993 Feb 1;150(3):1074–1083. [PubMed] [Google Scholar]
  15. Kobayashi M., Koyama A., Narita M., Shigematsu H. Intraglomerular monocytes in human glomerulonephritis. Nephron. 1991;59(4):580–585. doi: 10.1159/000186647. [DOI] [PubMed] [Google Scholar]
  16. Lambert P. H., Dixon F. J. Pathogenesis of the glomerulonephritis of NZB/W mice. J Exp Med. 1968 Mar 1;127(3):507–522. doi: 10.1084/jem.127.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lee L. A., Norris D. A. Mechanisms of cutaneous tissue damage in lupus erythematosus. Immunol Ser. 1989;46:359–386. [PubMed] [Google Scholar]
  18. Meager A., Leung H., Woolley J. Assays for tumour necrosis factor and related cytokines. J Immunol Methods. 1989 Jan 6;116(1):1–17. doi: 10.1016/0022-1759(89)90306-2. [DOI] [PubMed] [Google Scholar]
  19. Nishikawa K., Guo Y. J., Miyasaka M., Tamatani T., Collins A. B., Sy M. S., McCluskey R. T., Andres G. Antibodies to intercellular adhesion molecule 1/lymphocyte function-associated antigen 1 prevent crescent formation in rat autoimmune glomerulonephritis. J Exp Med. 1993 Mar 1;177(3):667–677. doi: 10.1084/jem.177.3.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nolasco F. E., Cameron J. S., Hartley B., Coelho A., Hildreth G., Reuben R. Intraglomerular T cells and monocytes in nephritis: study with monoclonal antibodies. Kidney Int. 1987 May;31(5):1160–1166. doi: 10.1038/ki.1987.123. [DOI] [PubMed] [Google Scholar]
  21. Notkins A. L. Enzymatic and immunologic alterations in mice infected with lactic dehydrogenase virus. Am J Pathol. 1971 Sep;64(3):733–746. [PMC free article] [PubMed] [Google Scholar]
  22. Oldstone M. B., Dixon F. J. Inhibition of antibodies to nuclear antigen and to DNA in New Zealand mice infected with lactate dehydrogenase virus. Science. 1972 Feb 18;175(4023):784–786. doi: 10.1126/science.175.4023.784. [DOI] [PubMed] [Google Scholar]
  23. Pober J. S., Gimbrone M. A., Jr, Lapierre L. A., Mendrick D. L., Fiers W., Rothlein R., Springer T. A. Overlapping patterns of activation of human endothelial cells by interleukin 1, tumor necrosis factor, and immune interferon. J Immunol. 1986 Sep 15;137(6):1893–1896. [PubMed] [Google Scholar]
  24. Rehan A., Johnson K. J., Wiggins R. C., Kunkel R. G., Ward P. A. Evidence for the role of oxygen radicals in acute nephrotoxic nephritis. Lab Invest. 1984 Oct;51(4):396–403. [PubMed] [Google Scholar]
  25. Rowson K. E., Mahy B. W. Lactate dehydrogenase-elevating virus. J Gen Virol. 1985 Nov;66(Pt 11):2297–2312. doi: 10.1099/0022-1317-66-11-2297. [DOI] [PubMed] [Google Scholar]
  26. Schreiner G. F. The role of the macrophage in glomerular injury. Semin Nephrol. 1991 May;11(3):268–275. [PubMed] [Google Scholar]
  27. Shirai T., Hayakawa K., Okumura K., Tada T. Differential cytotoxic effect of natural thymocytotoxic autoantibody of NZB mice on functional subsets of T cells. J Immunol. 1978 Jun;120(6):1924–1929. [PubMed] [Google Scholar]
  28. Smith C. W. Endothelial adhesion molecules and their role in inflammation. Can J Physiol Pharmacol. 1993 Jan;71(1):76–87. doi: 10.1139/y93-012. [DOI] [PubMed] [Google Scholar]
  29. Snyder D. S., Unanue E. R. Corticosteroids inhibit murine macrophage Ia expression and interleukin 1 production. J Immunol. 1982 Nov;129(5):1803–1805. [PubMed] [Google Scholar]
  30. Stevenson M. M., Rees J. C., Meltzer M. S. Macrophage function in tumor-bearing mice: evidence for lactic dehydrogenase-elevating virus-associated changes. J Immunol. 1980 Jun;124(6):2892–2899. [PubMed] [Google Scholar]
  31. Tokado H., Yumura W., Shiota J., Hirose S., Sato H., Shirai T. Lupus nephritis in autoimmune-prone NZB x NZW F1 mice and mechanisms of transition of the glomerular lesions. Acta Pathol Jpn. 1991 Jan;41(1):1–11. [PubMed] [Google Scholar]
  32. Werber H. I., Emancipator S. N., Tykocinski M. L., Sedor J. R. The interleukin 1 gene is expressed by rat glomerular mesangial cells and is augmented in immune complex glomerulonephritis. J Immunol. 1987 May 15;138(10):3207–3212. [PubMed] [Google Scholar]
  33. Wuthrich R. P., Jevnikar A. M., Takei F., Glimcher L. H., Kelley V. E. Intercellular adhesion molecule-1 (ICAM-1) expression is upregulated in autoimmune murine lupus nephritis. Am J Pathol. 1990 Feb;136(2):441–450. [PMC free article] [PubMed] [Google Scholar]

Articles from International Journal of Experimental Pathology are provided here courtesy of Wiley

RESOURCES