Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1978 Jul;38(1):114–121. doi: 10.1038/bjc.1978.170

Lactoperoxidase-catalysed iodination of surface proteins on human melanoma cells.

G P Roberts
PMCID: PMC2009682  PMID: 687508

Abstract

The cell-surface proteins of 6 different melanoma cell cultures have been labelled with 125I using lactaperoxidase-catalysed iodination. Fractionation of the proteins was achieved using 5--22.5% polacrylamide-gradient gel electrophoresis in the presence of sodium dodecyl sulphate (SDS) and the proteins were detected by autoradiography. Up to 24 labelled proteins were detected in the individual cell cultures, but the proteins labelled differed considerably in the 6 cultures examined. A possible reason for this, involving variation in the glycosylation of cell-surface glycoproteins is discussed. Cells of the same melanoma line had similar cell-surface proteins at different passage levels, but changes in the labelled proteins occurred when the culture conditions were altered. The cell-surface proteins of high molecular weight were cleaved by trypsin, but most of the low mol.-wt. proteins were resistant to trypsin. The "large external transformation sensitive" (LETS) protein detected as a major protein on fibroblasts in culture was not a dominant protein on the melanoma cells. It was detected on only 4/6 cell cultures. Possible relationships of the cell-surface proteins described in this study to morphology, immunological properties and proteolytic activity of human melanoma cells are discussed.

Full text

PDF
114

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bosmann H. B. Elevated glycosidases and proteolytic enzymes in cells transformed by RNA tumor virus. Biochim Biophys Acta. 1972 Apr 21;264(2):339–343. doi: 10.1016/0304-4165(72)90298-x. [DOI] [PubMed] [Google Scholar]
  2. Buck C. A., Glick M. C., Warren L. Glycopeptides from the surface of control and virus-transformed cells. Science. 1971 Apr 9;172(3979):169–171. doi: 10.1126/science.172.3979.169. [DOI] [PubMed] [Google Scholar]
  3. Butters T. D., Hughes R. C. Solubilization and fractionation of glycoproteins and glycolipids of KB cell membranes. Biochem J. 1974 Jun;140(3):469–478. doi: 10.1042/bj1400469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Butters T. D., Hughes R. C. Surface labelling for human tumour KB cells. Iodination and fractionation of membrane glycoproteins. Biochem J. 1975 Jul;150(1):59–69. doi: 10.1042/bj1500059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goldberg A. R. Increased protease levels in transformed cells: a casein overlay assay for the detection of plasminogen activator production. Cell. 1974 Jun;2(2):95–102. doi: 10.1016/0092-8674(74)90097-x. [DOI] [PubMed] [Google Scholar]
  6. Hatcher V. B., Wertheim M. S., Rhee C. Y., Tsien G., Burk P. G. Relationship between cell surface protease activity and doubling time in various normal and transformed cells. Biochim Biophys Acta. 1976 Dec 21;451(2):499–510. doi: 10.1016/0304-4165(76)90145-8. [DOI] [PubMed] [Google Scholar]
  7. Hubbard A. L., Cohn Z. A. Externally disposed plasma membrane proteins. I. Enzymatic iodination of mouse L cells. J Cell Biol. 1975 Feb;64(2):438–460. doi: 10.1083/jcb.64.2.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hubbard A. L., Cohn Z. A. The enzymatic iodination of the red cell membrane. J Cell Biol. 1972 Nov;55(2):390–405. doi: 10.1083/jcb.55.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hunt R. C., Brown J. C. Identification of a high molecular weight trans-membrane protein in mouse L cells. J Mol Biol. 1975 Oct 5;97(4):413–422. doi: 10.1016/s0022-2836(75)80051-9. [DOI] [PubMed] [Google Scholar]
  10. Hynes R. O. Alteration of cell-surface proteins by viral transformation and by proteolysis. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3170–3174. doi: 10.1073/pnas.70.11.3170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hynes R. O., Bye J. M. Density and cell cycle dependence of cell surface proteins in hamster fibroblasts. Cell. 1974 Oct;3(2):113–120. doi: 10.1016/0092-8674(74)90114-7. [DOI] [PubMed] [Google Scholar]
  12. Hynes R. O. Cell surface proteins and malignant transformation. Biochim Biophys Acta. 1976 Apr 30;458(1):73–107. doi: 10.1016/0304-419x(76)90015-9. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Laico M. T., Ruoslahti E. I., Papermaster D. S., Dreyer W. J. Isolation of the fundamental polypeptide subunits of biological membranes. Proc Natl Acad Sci U S A. 1970 Sep;67(1):120–127. doi: 10.1073/pnas.67.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Morrison M. The determination of the exposed proteins on membranes by the use of lactoperoxidase. Methods Enzymol. 1974;32:103–109. doi: 10.1016/0076-6879(74)32013-7. [DOI] [PubMed] [Google Scholar]
  16. Payne J. W. Polymerization of proteins with glutaraldehyde. Soluble molecular-weight markers. Biochem J. 1973 Dec;135(4):867–873. doi: 10.1042/bj1350867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pearlstein E., Waterfield M. D. Metabolic studies on 125I-labeled baby hamster kidney cell plasma membranes. Biochim Biophys Acta. 1974 Aug 7;362(1):1–12. doi: 10.1016/0304-4165(74)90019-1. [DOI] [PubMed] [Google Scholar]
  18. Pitt-Rivers R., Impiombato F. S. The binding of sodium dodecyl sulphate to various proteins. Biochem J. 1968 Oct;109(5):825–830. doi: 10.1042/bj1090825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schnebli H. P. A protease-like activity associated with malignant cells. Schweiz Med Wochenschr. 1972 Aug 19;102(33):1194–1197. [PubMed] [Google Scholar]
  20. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  21. Studier F. W. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol. 1973 Sep 15;79(2):237–248. doi: 10.1016/0022-2836(73)90003-x. [DOI] [PubMed] [Google Scholar]
  22. Unkeless J. C., Tobia A., Ossowski L., Quigley J. P., Rifkin D. B., Reich E. An enzymatic function associated with transformation of fibroblasts by oncogenic viruses. I. Chick embryo fibroblast cultures transformed by avian RNA tumor viruses. J Exp Med. 1973 Jan 1;137(1):85–111. doi: 10.1084/jem.137.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Whitehead R. H. The culture of tumour cells from human tumour biopsies. Clin Oncol. 1976 Jun;2(2):131–140. [PubMed] [Google Scholar]
  24. Yamada K. M., Yamada S. S., Pastan I. Cell surface protein partially restores morphology, adhesiveness, and contact inhibition of movement to transformed fibroblasts. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1217–1221. doi: 10.1073/pnas.73.4.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES