Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1978 Oct;38(4):513–520. doi: 10.1038/bjc.1978.238

Growth and transplantability of clonally related tumorigenic murine cell lines.

J R Walker
PMCID: PMC2009754  PMID: 728338

Abstract

A malignant cell line derived from the s.c. inoculation of Adenovirus 12 into a CBA mouse has been isolated in vitro, cloned, and within 10 passages the clones have been investigated for their karyotype, morphology, growth rate, saturation density and response to plant lectin in vitro, and their tumorigenicity and growth rate in vivo. The cell lines rapidly acquired a highly heterogeneous karyotype, but remained homogeneous with respect to more complex physiological parameters. Examination of the cellular characteristics has indicated that the rate of growth of the cell lines in vivo, but not their tumorigenicity, may be related to their in vitro potentials. The clones responded differently to the cytotoxic effects of concanavalin A, but there was no correlation between the effect of the lectin and the malignant potential of the cells.

Full text

PDF
513

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BUONASSISI V., SATO G., COHEN A. I. Hormone-producing cultures of adrenal and pituitary tumor origin. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1184–1190. doi: 10.1073/pnas.48.7.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berman L. D. Lack of correlation between growth characteristics, agglutinability by plant lectins and the malignant phenotype. Int J Cancer. 1975 Jun 15;15(6):973–979. doi: 10.1002/ijc.2910150613. [DOI] [PubMed] [Google Scholar]
  3. Clarke G. D., Shearer M., Ryan P. J. Association of polyanion resistance with tumorigenicity and other properties in BHK-21 cells. Nature. 1974 Dec 6;252(5483):501–503. doi: 10.1038/252501a0. [DOI] [PubMed] [Google Scholar]
  4. Cuatrecasas P., Tell G. P. Insulin-like activity of concanavalin A and wheat germ agglutinin--direct interactions with insulin receptors. Proc Natl Acad Sci U S A. 1973 Feb;70(2):485–489. doi: 10.1073/pnas.70.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gallimore P. H., McDougall J. K., Chen L. B. In vitro traits of adenovirus-transformed cell lines and their relevance to tumorigenicity in nude mice. Cell. 1977 Apr;10(4):669–678. doi: 10.1016/0092-8674(77)90100-3. [DOI] [PubMed] [Google Scholar]
  6. Hosokawa M., Orsini F., Mihich E. Fast- and slow-growing transplantable tumors derived from spontaneous mammary tumors of the DBA/2 Ha-DD mouse. Cancer Res. 1975 Oct;35(10):2657–2662. [PubMed] [Google Scholar]
  7. Lehman J. M., Bloustein P. Chromosome analysis and agglutination by concanavalin a of primary simian-virus-40-induced tumors. Int J Cancer. 1974 Dec 15;14(6):771–778. doi: 10.1002/ijc.2910140611. [DOI] [PubMed] [Google Scholar]
  8. Nicolson G. L. The interactions of lectins with animal cell surfaces. Int Rev Cytol. 1974;39:89–190. doi: 10.1016/s0074-7696(08)60939-0. [DOI] [PubMed] [Google Scholar]
  9. Porter E. H., Hewitt H. B., Blake E. R. The transplantation kinetics of tumour cells. Br J Cancer. 1973 Jan;27(1):55–62. doi: 10.1038/bjc.1973.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Potter C. W., Oxford J. S. Transplantation immunity following immunization with extracts of adenovirus 12 tumour cells. Int J Cancer. 1970 Nov 15;6(3):410–414. doi: 10.1002/ijc.2910060311. [DOI] [PubMed] [Google Scholar]
  11. Ralph P., Nakoinz I. Inhibitory effects of lectins and lymphocyte mitogens on murine lymphomas and myelomas. J Natl Cancer Inst. 1973 Sep;51(3):883–890. doi: 10.1093/jnci/51.3.883. [DOI] [PubMed] [Google Scholar]
  12. Rees J. A., Westwood M. A method of comparing differences in tumour growth rates applied to a study of the increasing growth capacity of mouse carcinomata. Br J Cancer. 1974 Feb;29(2):151–157. doi: 10.1038/bjc.1974.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Shin S. I., Freedman V. H., Risser R., Pollack R. Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4435–4439. doi: 10.1073/pnas.72.11.4435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shoham J., Inbar M., Sachs L. Differential toxicity on normal and transformed cells in vitro and inhibition of tumour development in vivo by concanavalin A. Nature. 1970 Sep 19;227(5264):1244–1246. doi: 10.1038/2271244a0. [DOI] [PubMed] [Google Scholar]
  15. So L. L., Goldstein I. J. Protein-carbohydrate interaction. IV. Application of the quantitative precipitin method to polysaccharide-concanavalin A interaction. J Biol Chem. 1967 Apr 10;242(7):1617–1622. [PubMed] [Google Scholar]
  16. Stephenson J. R., Reynolds R. K., Aaronson S. A. Characterization of morphologic revertants of murine and avian sarcoma virus-transformed cells. J Virol. 1973 Feb;11(2):218–222. doi: 10.1128/jvi.11.2.218-222.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Thompson J. E., Elligsen J. D., Frey H. E. Characterization of an SV40-transformed 3T3 cell line expressing an unusual phenotype. J Cell Sci. 1975 Aug;18(3):427–440. doi: 10.1242/jcs.18.3.427. [DOI] [PubMed] [Google Scholar]
  18. Vogel A., Pollack R. Isolation and characterization of revertant cell lines. IV. Direct selection of serum-revertant sublines of SV40-transformed 3T3 mouse cells. J Cell Physiol. 1973 Oct;82(2):189–198. doi: 10.1002/jcp.1040820207. [DOI] [PubMed] [Google Scholar]
  19. Vogel A., Risser R., Pollack R. Isolation and characterization of revertant cell lines. 3. Isolation of density-revertants of SV40-transformed 3T3 cells using colchicine. J Cell Physiol. 1973 Oct;82(2):181–188. doi: 10.1002/jcp.1040820206. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES