Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1979 Jun;39(6):718–730. doi: 10.1038/bjc.1979.126

Plasminogen activation transforms the morphology of quiescent 3T3 cell monolayers and initiates growth.

P Whur, J J Silcox, J A Boston, D C Williams
PMCID: PMC2009998  PMID: 156038

Abstract

Plasminogen activator of cell origin converts the plasma protein plasminogen to the proteolytic enzyme plasmin. Recently, high levels of activator have been observed to be particularly associated with tumours and transformed cells, and a functional relationship between plasminogen activation and malignancy has been proposed. In this paper we have attempted to induce transformation-like morphology and growth in a population of confluent quiescent cells in tissue culture, by inducing plasminogen activation. Untransformed 3T3 cells grown to confluence in plasminogen-free medium were subjected to plasminogen activation by the addition of urokinase and plasminogen or plasminogen-containing acid-treated serum, or plasmin. Under these conditions, the previously well ordered monolayers became disrupted, with multilayering, and discontinuities in the cell sheet, and the cells simultaneously grew to significantly higher densities. Removal of the plasmin-containing medium supplements effected some restoration of normal morphology. Thus, lhen plasmin was present 3T3 cells did not become transformed, but expresses transformation-like features. Well ordered monolayer morphology and quiescence in 3T3 cells at confluence are therefore dependent upon the absence of plasminogen activation.

Full text

PDF
718

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Astedt B., Barlow G., Holmberg L. Time-related release of various molecular forms of urokinase in tissue culture. Thromb Res. 1977 Aug;11(2):149–153. doi: 10.1016/0049-3848(77)90033-0. [DOI] [PubMed] [Google Scholar]
  2. BACHMANN F., FLETCHER A. P., ALKJAERSIG N., SHERRY S. PARTIAL PURIFICATION AND PROPERTIES OF THE PLASMINOGEN ACTIVATOR FROM PIG HEART. Biochemistry. 1964 Oct;3:1578–1585. doi: 10.1021/bi00898a033. [DOI] [PubMed] [Google Scholar]
  3. Barrett J. C., Crawford B. D., Grady D. L., Hester L. D., Jones P. A., Benedict W. F., Ts'o P. O. Temporal acquistion of enhanced fibrinolytic activity by syrian hamster embryo cells following treatment with benzo(a)pyrene. Cancer Res. 1977 Oct;37(10):3815–3823. [PubMed] [Google Scholar]
  4. Beers W. H. Follicular plasminogen and plasminogen activator and the effect of plasmin on ovarian follicle wall. Cell. 1975 Nov;6(3):379–386. doi: 10.1016/0092-8674(75)90187-7. [DOI] [PubMed] [Google Scholar]
  5. Bernik M. B., Kwaan H. C. Origin of fibrinolytic activity in cultures of the human kidney. J Lab Clin Med. 1967 Oct;70(4):650–661. [PubMed] [Google Scholar]
  6. Bernik M. B., Kwaan H. C. Plasminogen activator activity in cultures from human tissues. An immunological and histochemical study. J Clin Invest. 1969 Sep;48(9):1740–1753. doi: 10.1172/JCI106140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bernik M. B., Oller E. P. Plasminogen activator and proactivator (urokinase precursor) in lung cultures. J Am Med Womens Assoc. 1976 Dec;31(12):465–472. [PubMed] [Google Scholar]
  8. Blumberg P. M., Robbins P. W. Effect of proteases on activation of resting chick embryo fibroblasts and on cell surface proteins. Cell. 1975 Oct;6(2):137–147. doi: 10.1016/0092-8674(75)90004-5. [DOI] [PubMed] [Google Scholar]
  9. Burger M. M. Proteolytic enzymes initiating cell division and escape from contact inhibition of growth. Nature. 1970 Jul 11;227(5254):170–171. doi: 10.1038/227170a0. [DOI] [PubMed] [Google Scholar]
  10. Chibber B. A., Niles R. M., Prehn L., Sorof S. High extracellular fibrinolytic activity of tumors and control normal tissues. Biochem Biophys Res Commun. 1975 Jul 22;65(2):806–812. doi: 10.1016/s0006-291x(75)80216-6. [DOI] [PubMed] [Google Scholar]
  11. Chou I. N., Black P. H., Roblin R. O. Suppression of fibrinolysin T activity fails to restore density-dependent growth inhibition to SV3T3 cells. Nature. 1974 Aug 30;250(5469):739–741. doi: 10.1038/250739a0. [DOI] [PubMed] [Google Scholar]
  12. Chou I. N., O'Donnell S. P., Black P. H., Roblin R. O. Cell density-dependent secretion of plasminogen activator by 3T3 cells. J Cell Physiol. 1977 Apr;91(1):31–37. doi: 10.1002/jcp.1040910104. [DOI] [PubMed] [Google Scholar]
  13. Deutsch D. G., Mertz E. T. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970 Dec 4;170(3962):1095–1096. doi: 10.1126/science.170.3962.1095. [DOI] [PubMed] [Google Scholar]
  14. Hisazumi H., Fukushima K. A study on fibrinolysis in experimental bladder tumors. Urol Res. 1973 Dec;1(4):186–191. doi: 10.1007/BF00256622. [DOI] [PubMed] [Google Scholar]
  15. Iwamoto M., Abiko Y., Shimizu M. Plasminogen-plasmin system. 3. Kinetics of plasminogen activation and inhibition of plasminogen-plasmin system by some synthetic inhibitors. J Biochem. 1968 Dec;64(6):759–767. doi: 10.1093/oxfordjournals.jbchem.a128959. [DOI] [PubMed] [Google Scholar]
  16. Jones P. A., Laug W. E., Benedict W. F. Fibrinolytic activity in a human fibrosarcoma cell line and evidence for the induction of plasminogen activator secretion during tumor formation. Cell. 1975 Oct;6(2):245–252. doi: 10.1016/0092-8674(75)90015-x. [DOI] [PubMed] [Google Scholar]
  17. Jones P. A., Laug W. E., Gardner A., Nye C. A., Fink L. M., Benedict W. F. In vitro correlates of transformation in C3H/10T1/2 clone 8 mouse cells. Cancer Res. 1976 Aug;36(8):2863–2867. [PubMed] [Google Scholar]
  18. Jones P. A., Rhim J. S., Isaacs H., Jr, McAllister R. M. The relationship between tumorigenicity, growth in agar and fibrinolytic activity in a line of human osteosarcoma cells. Int J Cancer. 1975 Oct 15;16(4):616–621. doi: 10.1002/ijc.2910160411. [DOI] [PubMed] [Google Scholar]
  19. Jones P., Benedict W., Strickland S., Reich E. Fibrin overlay methods for the detection of single transformed cells and colonies of transformed cells. Cell. 1975 Jul;5(3):323–329. doi: 10.1016/0092-8674(75)90108-7. [DOI] [PubMed] [Google Scholar]
  20. Kamely D. Retransformation of a thermosensitive BALB/c-3T3 transformant by murine sarcoma virus at the non-permissive temperature. Nature. 1976 May 6;261(5555):50–52. doi: 10.1038/261050a0. [DOI] [PubMed] [Google Scholar]
  21. LASSEN M. Heat denaturation of plasminogen in the fibrin plate method. Acta Physiol Scand. 1953 Feb 28;27(4):371–376. doi: 10.1111/j.1748-1716.1953.tb00951.x. [DOI] [PubMed] [Google Scholar]
  22. Laug W. E., Jones P. A., Benedict W. F. Relationship between fibrinolysis of cultured cells and malignancy. J Natl Cancer Inst. 1975 Jan;54(1):173–179. doi: 10.1093/jnci/54.1.173. [DOI] [PubMed] [Google Scholar]
  23. Loskutoff D. J., Edgington T. E. Synthesis of a fibrinolytic activator and inhibitor by endothelial cells. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3903–3907. doi: 10.1073/pnas.74.9.3903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mott D. M., Fabisch P. H., Sani B. P., Sorof S. Lack of correlation between fibrinolysis and the transformed state of cultured mammalian cells. Biochem Biophys Res Commun. 1974 Nov 27;61(2):621–627. doi: 10.1016/0006-291x(74)91002-x. [DOI] [PubMed] [Google Scholar]
  25. Ossowski L., Quigley J. P., Kellerman G. M., Reich E. Fibrinolysis associated with oncogenic transformation. Requirement of plasminogen for correlated changes in cellular morphology, colony formation in agar, and cell migration. J Exp Med. 1973 Nov 1;138(5):1056–1064. doi: 10.1084/jem.138.5.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ossowski L., Quigley J. P., Reich E. Fibrinolysis associated with oncogenic transformation. Morphological correlates. J Biol Chem. 1974 Jul 10;249(13):4312–4320. [PubMed] [Google Scholar]
  27. Ossowski L., Unkeless J. C., Tobia A., Quigley J. P., Rifkin D. B., Reich E. An enzymatic function associated with transformation of fibroblasts by oncogenic viruses. II. Mammalian fibroblast cultures transformed by DNA and RNA tumor viruses. J Exp Med. 1973 Jan 1;137(1):112–126. doi: 10.1084/jem.137.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Peterson H. I., Kjartansson I., Korsan-Bengtsen K., Rudenstam C. M., Zettergren L. Fibrinolysis in human malignant tumours. Acta Chir Scand. 1973;139(3):219–223. [PubMed] [Google Scholar]
  29. Pollack R., Risser R., Conlon S., Rifkin D. Plasminogen activator production accompanies loss of anchorage regulation in transformation of primary rat embryo cells by simian virus 40. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4792–4796. doi: 10.1073/pnas.71.12.4792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Quigley J. P., Ossowski L., Reich E. Plasminogen, the serum proenzyme activated by factors from cells transformed by oncogenic viruses. J Biol Chem. 1974 Jul 10;249(13):4306–4311. [PubMed] [Google Scholar]
  31. Rudland P. S., Pearlstein E., Kamely D., Nutt M., Eckhart W. Independent regulation of cellular properties in thermosensitive transformation mutants of mouse fibroblasts. Nature. 1975 Jul 3;256(5512):43–46. doi: 10.1038/256043a0. [DOI] [PubMed] [Google Scholar]
  32. Sherman M. I., Strickland S., Reich E. Differentiation of early mouse embryonic and teratocarcinoma cells in vitro: plasminogen activator production. Cancer Res. 1976 Nov;36(11 Pt 2):4208–4216. [PubMed] [Google Scholar]
  33. Strickland S., Beers W. H. Studies on the role of plasminogen activator in ovulation. In vitro response of granulosa cells to gonadotropins, cyclic nucleotides, and prostaglandins. J Biol Chem. 1976 Sep 25;251(18):5694–5702. [PubMed] [Google Scholar]
  34. Strickland S., Reich E., Sherman M. I. Plasminogen activator in early embryogenesis: enzyme production by trophoblast and parietal endoderm. Cell. 1976 Oct;9(2):231–240. doi: 10.1016/0092-8674(76)90114-8. [DOI] [PubMed] [Google Scholar]
  35. TODARO G. J., GREEN H., GOLDBERG B. D. TRANSFORMATION OF PROPERTIES OF AN ESTABLISHED CELL LINE BY SV40 AND POLYOMA VIRUS. Proc Natl Acad Sci U S A. 1964 Jan;51:66–73. doi: 10.1073/pnas.51.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. TODD A. S. The histological localisation of fibrinolysin activator. J Pathol Bacteriol. 1959 Jul;78:281–283. doi: 10.1002/path.1700780131. [DOI] [PubMed] [Google Scholar]
  37. Thorsen S. Human urokinase and porcine tissue plasminogen activator. A comparative study of the mechanism of fibrinolysis, and the effect of natural proteinase inhibitors and omega-aminocarboxylic acids. Dan Med Bull. 1977 Oct;24(5):189–206. [PubMed] [Google Scholar]
  38. Urquhart C., Whur P., Gordon M., Silcox J. J., Williams D. C., Wright E. D. The correlation between plasminogen activator-stimulated DNA synthesis and cell morphology in 3T3 cells. Exp Cell Res. 1978 Apr;113(1):31–38. doi: 10.1016/0014-4827(78)90084-8. [DOI] [PubMed] [Google Scholar]
  39. Vassalli J. D., Reich E. Macrophage plasminogen activator: induction by products of activated lymphoid cells. J Exp Med. 1977 Feb 1;145(2):429–437. doi: 10.1084/jem.145.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wachsman J. T., Biedler J. L. Fibrinolytic activity associated with human neuroblastoma cells. Exp Cell Res. 1974 Jun;86(2):264–268. doi: 10.1016/0014-4827(74)90712-5. [DOI] [PubMed] [Google Scholar]
  41. Weber M. J. Inhibition of protease activity in cultures of rous sarcoma virus-transformed cells: effect on the transformed phenotype. Cell. 1975 Jul;5(3):253–261. doi: 10.1016/0092-8674(75)90100-2. [DOI] [PubMed] [Google Scholar]
  42. Whur P., Koppel H., Urquhart C., Williams D. C. Plasmin-mediated agglutination by concanavalin A of 3T3 cells cocultured with SV40-3T3 transformants. Nature. 1976 Apr 22;260(5553):709–710. doi: 10.1038/260709a0. [DOI] [PubMed] [Google Scholar]
  43. Wigler M., Weinstein I. B. Tumour promotor induces plasminogen activator. Nature. 1976 Jan 22;259(5540):232–233. doi: 10.1038/259232a0. [DOI] [PubMed] [Google Scholar]
  44. Wu M., Arimura G. K., Yunis A. A. Purification and characterization of a plasminogen activator secreted by cultured human pancreatic carcinoma cells. Biochemistry. 1977 May 3;16(9):1908–1913. doi: 10.1021/bi00628a023. [DOI] [PubMed] [Google Scholar]
  45. Zetter B. R., Chen L. B., Buchanan J. M. Effects of protease treatment on growth, morphology, adhesion, and cell surface proteins of secondary chick embryo fibroblasts. Cell. 1976 Mar;7(3):407–412. doi: 10.1016/0092-8674(76)90170-7. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES