Abstract
Immunoreactive and bioassayable plasma fibronectin (opsonic α2 surface-binding (SB) glycoprotein) was measured during experimental Sarcoma-180 tumour growth in mice. Male C57BL/6 mice were challenged s.c. with 2 × 106 viable Sarcoma-180 tumour cells and evaluated sequentially in parallel with saline-injected controls over a 21-day experimental period. Before challenge, immunoreactive plasma fibronectin was 1050-1150 μg/ml. Minimal tumour growth occurred until 6 days after tumour challenge. There was then a rapid increase in primary tumour size, especially over the 7-14-day interval, with a plateau of growth over the 18-21-day interval. Immunoreactive plasma fibronectin was significantly (P < 0·05) raised at 3 and 7 days after tumour challenge. A rapid rise (P < 0·001) to 2816·6 ± 158·9 μg/ml was observed at 14 days followed by a modest decline at 21 days. Bioassayable opsonic activity increased (P < 0·5) with the rise in immunoreactive fibronectin 3 and 7 days after tumour challenge, but the rapid rise in immunoreactive fibronectin over the 7-14-day interval was associated with a significant (P < 0·5) fall in bioassayable opsonic activity. Thus, the rapid rise in immunoreactive plasma fibronectin parallels the rapid rate of tumour growth, but is associated with a fall in opsonically active plasma fibronectin. Dissociation between immunoreactive and opsonically active plasma fibronectin may be mediated by inhibition and/or alteration of circulating fibronectin during rapid tumour growth. Alternatively, it may reflect increased release of antigenically related protein (i.e. cell-surface fibronectin) during rapid tumour growth, which may have limited biological opsonic activity.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BENNETT B., OLD L. J., BOYSE E. A. THE PHAGOCYTOSIS OF TUMOR CELLS IN VITRO. Transplantation. 1964 Mar;2:183–202. doi: 10.1097/00007890-196403000-00003. [DOI] [PubMed] [Google Scholar]
- BIOZZI G., STIFFEL C., HALPERN B. N., MOUTON D. Etude de la fonction phagocytaire du S.R.E. au cours du développment de tumeurs malignes expérimentales chez le rat et la souris. Ann Inst Pasteur (Paris) 1958 Jun;94(6):681–693. [PubMed] [Google Scholar]
- Blumenstock F. A., Saba T. M., Weber P., Laffin R. Biochemical and immunological characterization of human opsonic alpha2SB glycoprotein: its identity with cold-insoluble globulin. J Biol Chem. 1978 Jun 25;253(12):4287–4291. [PubMed] [Google Scholar]
- Blumenstock F. A., Saba T. M., Weber P. Purification of alpha-2-opsonic protein from human serum and its measurement by immunoassay. J Reticuloendothel Soc. 1978 Feb;23(2):119–134. [PubMed] [Google Scholar]
- Blumenstock F., Weber P., Saba T. M. Isolation and biochemical characterization of alpha-2-opsonic glycoprotein from rat serum. J Biol Chem. 1977 Oct 25;252(20):7156–7162. [PubMed] [Google Scholar]
- Chambers V. C., Weiser R. S. Brief communication: An electron microscope study of the cytophagocytosis of sarcoma I cells by alloimmune macrophages in vitro. J Natl Cancer Inst. 1973 Oct;51(4):1369–1375. doi: 10.1093/jnci/51.4.1369. [DOI] [PubMed] [Google Scholar]
- DILLER I. C., MANKOWSKI Z. T., FISHER M. E. The effect of yeast polysaccharides on mouse tumors. Cancer Res. 1963 Feb;23:201–208. [PubMed] [Google Scholar]
- Der C. J., Stanbridge E. J. Lack of correlation between the decreased expression of cell surface LETS protein and tumorigenicity in human cell hybrids. Cell. 1978 Dec;15(4):1241–1251. doi: 10.1016/0092-8674(78)90050-8. [DOI] [PubMed] [Google Scholar]
- Di Luzio N. R., McNamee R., Olcay I., Kitahama A., Miller R. H. Inhibition of tumor growth by recognition factors. Proc Soc Exp Biol Med. 1974 Jan;145(1):311–315. doi: 10.3181/00379727-145-37800. [DOI] [PubMed] [Google Scholar]
- Di Luzio N. R., Miller E., McNamee R., Pisano J. C. Alterations in plasma recognition factor activity in experimental leukemia. J Reticuloendothel Soc. 1972 Feb;11(2):186–197. [PubMed] [Google Scholar]
- Engvall E., Ruoslahti E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int J Cancer. 1977 Jul 15;20(1):1–5. doi: 10.1002/ijc.2910200102. [DOI] [PubMed] [Google Scholar]
- Hibbs J. B., Jr Heterocytolysis by macrophages activated by bacillus Calmette-Guérin: lysosome exocytosis into tumor cells. Science. 1974 Apr 26;184(4135):468–471. doi: 10.1126/science.184.4135.468. [DOI] [PubMed] [Google Scholar]
- Hibbs J. B., Jr, Lambert L. H., Jr, Remington J. S. Control of carcinogenesis: a possible role for the activated macrophage. Science. 1972 Sep 15;177(4053):998–1000. doi: 10.1126/science.177.4053.998. [DOI] [PubMed] [Google Scholar]
- Hynes R. O., Ali I. U., Destree A. T., Mautner V., Perkins M. E., Senger D. R., Wagner D. D., Smith K. K. A large glycoprotein lost from the surfaces of transformed cells. Ann N Y Acad Sci. 1978 Jun 20;312:317–342. doi: 10.1111/j.1749-6632.1978.tb16811.x. [DOI] [PubMed] [Google Scholar]
- Jaffe E. A., Mosher D. F. Synthesis of fibronectin by cultured human endothelial cells. J Exp Med. 1978 Jun 1;147(6):1779–1791. doi: 10.1084/jem.147.6.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keller R. Evidence for compromise of tumour immunity in rats by a non-specific blocking serum factor that inactivates macrophages. Br J Exp Pathol. 1973 Jun;54(3):298–305. [PMC free article] [PubMed] [Google Scholar]
- Keller R., Hess M. W. Tumour growth and non-specific immunity in rats: the mechanisms involved in inhibition of tumour growth. Br J Exp Pathol. 1972 Oct;53(5):570–577. [PMC free article] [PubMed] [Google Scholar]
- Keller R. Susceptibility of normal and transformed cell lines to cytostatic and cytocidal effects exerted by macrophages. J Natl Cancer Inst. 1976 Feb;56(2):369–374. doi: 10.1093/jnci/56.2.369. [DOI] [PubMed] [Google Scholar]
- Levy M. H., Wheelock E. F. The role of macrophages in defense against neoplastic disease. Adv Cancer Res. 1974;20:131–163. doi: 10.1016/s0065-230x(08)60110-4. [DOI] [PubMed] [Google Scholar]
- Mosesson M. W. Cold-insoluble globulin (CIg), a circulating cell surface protein. Thromb Haemost. 1977 Dec 15;38(4):742–750. [PubMed] [Google Scholar]
- Mosher D. F. Action of fibrin-stabilizing factor on cold-insoluble globulin and alpha2-macroglobulin in clotting plasma. J Biol Chem. 1976 Mar 25;251(6):1639–1645. [PubMed] [Google Scholar]
- OLD L. J., BENACERRAF B., CLARKE D. A., CARSWELL E. A., STOCKERT E. The role of the reticuloendothelial system in the host reaction to neoplasia. Cancer Res. 1961 Oct;21:1281–1300. [PubMed] [Google Scholar]
- Pisano J. C., Jackson J. P., Di Luzio N. R., Ichinose H. Dimensions of humoral recognition factor depletion in carcinomatous patients. Cancer Res. 1972 Jan;32(1):11–15. [PubMed] [Google Scholar]
- Ryder K. W., Jr, Kaplan J. E., Saba T. M. Serum calcium and hepatic Kupffer cell phagocytosis. Proc Soc Exp Biol Med. 1975 May;149(1):163–167. doi: 10.3181/00379727-149-38764. [DOI] [PubMed] [Google Scholar]
- Saba T. M., Antikatzides T. G. Decreased resistance to intravenous tumour-cell challenge during reticuloendothelial depression following surgery. Br J Cancer. 1976 Oct;34(4):381–389. doi: 10.1038/bjc.1976.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saba T. M., Antikatzides T. G. Humoral mediated macrophage response during tumour growth. Br J Cancer. 1975 Oct;32(4):471–482. doi: 10.1038/bjc.1975.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saba T. M., Blumenstock F. A., Scovill W. A., Bernard H. Cryoprecipitate reversal of opsonic alpha2-surface binding glycoprotein deficiency in septic surgical and trauma patients. Science. 1978 Aug 18;201(4356):622–624. doi: 10.1126/science.675246. [DOI] [PubMed] [Google Scholar]
- Saba T. M., Blumenstock F. A., Weber P., Kaplan J. E. Physiologic role of cold-insoluble globulin in systemic host defense: implications of its characterization as the opsonic alpha 2-surface-binding glycoprotein. Ann N Y Acad Sci. 1978 Jun 20;312:43–55. doi: 10.1111/j.1749-6632.1978.tb16792.x. [DOI] [PubMed] [Google Scholar]
- Saba T. M., Cho E. Alteration of tumor growth by a purified alpha-2-glycoprotein. J Reticuloendothel Soc. 1977 Dec;22(6):583–596. [PubMed] [Google Scholar]
- Saba T. M., Cho E. Reticuloendothelial systemic response to operative trauma as influenced by cryoprecipitate or cold-insoluble globulin therapy. J Reticuloendothel Soc. 1979 Aug;26(2):171–186. [PubMed] [Google Scholar]
- Saba T. M., Di Luzio N. R. Reticuloendothelial blockade and recovery as a function of opsonic activity. Am J Physiol. 1969 Jan;216(1):197–205. doi: 10.1152/ajplegacy.1969.216.1.197. [DOI] [PubMed] [Google Scholar]
- Saba T. M. Effect of surgical trauma on the clearance and localization of blood-borne particulate matter. Surgery. 1972 May;71(5):675–685. [PubMed] [Google Scholar]
- Saba T. M., Jaffe E. Plasma fibronectin (opsonic glycoprotein): its synthesis by vascular endothelial cells and role in cardiopulmonary integrity after trauma as related to reticuloendothelial function. Am J Med. 1980 Apr;68(4):577–594. doi: 10.1016/0002-9343(80)90310-1. [DOI] [PubMed] [Google Scholar]
- Saba T. M. Physiology and physiopathology of the reticuloendothelial system. Arch Intern Med. 1970 Dec;126(6):1031–1052. [PubMed] [Google Scholar]
- Saba T. M. Prevention of liver reticuloendothelial systemic host defense failure after surgery by intravenous opsonic glycoprotein therapy. Ann Surg. 1978 Aug;188(2):142–152. doi: 10.1097/00000658-197808000-00003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scovill W. A., Saba T. M., Blumenstock F. A., Bernard H., Powers S. R., Jr Opsonic alpha2 surface binding glycoprotein therapy during sepsis. Ann Surg. 1978 Oct;188(4):521–529. doi: 10.1097/00000658-197810000-00009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stern K., Bartizal C. A., Divshony S. Changes in reticuloendothelial phagocytosis in mice with spontaneous tumors. J Natl Cancer Inst. 1967 Apr;38(4):469–480. [PubMed] [Google Scholar]
- Watson J. The influence of intracellular levels of cyclic nucleotides on cell proliferation and the induction of antibody synthesis. J Exp Med. 1975 Jan 1;141(1):97–111. doi: 10.1084/jem.141.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamada K. M., Kennedy D. W. Fibroblast cellular and plasma fibronectins are similar but not identical. J Cell Biol. 1979 Feb;80(2):492–498. doi: 10.1083/jcb.80.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamada K. M., Olden K. Fibronectins--adhesive glycoproteins of cell surface and blood. Nature. 1978 Sep 21;275(5677):179–184. doi: 10.1038/275179a0. [DOI] [PubMed] [Google Scholar]

