Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1980 Jun;41(6):946–955. doi: 10.1038/bjc.1980.173

Oxygen-dependent free radicals in spermine oxidation cytostasis and chemiluminescence and the role of superoxide dismutase

J M Gaugas, D L Dewey
PMCID: PMC2010368  PMID: 7426319

Abstract

Spermine interacted with serum polyamine oxidase (PAO) to arrest proliferation of cultured Bri8 lymphocytes. Arrest was independent of catalase activity and was not directly due to an H2O2 byproduct. Arrest was averted by 3-hydroxybenzyloxyamine, which inactivates the pyridoxal co-factor of PAO. The oxidation of spermine in the presence of different concentrations of PAO was non-linear, which implied complex intermediate events for conversion of spermine to labile di-oxidized spermine (N,N′-bis(3-propionaldehyde)-1,4-butanediamine) with, perhaps, overall generation of free radicals (O2 and ·OH) which are damaging to cells. Exogenous free radicals were apparently neither direct participants in cytostasis, nor in the chemiluminescence demonstrable for spermine oxidation. Thiourea, an ·OH scavenger, protected against both proliferation arrest and luminescence. Many other powerful ·OH scavengers, however, were ineffective. Though reaction mixtures reduced ferricytochrome c initially, reduction was not inhibited by superoxide dismutase (SOD) which indicated that the anion O2 had not been generated. The powerful reducing capability of di-oxidized spermine itself could have competed against any O2 for ferricytochrome c reduction. Nevertheless, O2 was generated during further PAO conversion and/or auto-oxidation of di-oxidized spermine. Curiously, addition of SOD to destroy presumptive O2 variably potentiated cytotoxicity. Blockage of any anion channels in the cell plasma membrane by stilbene derivatives did not influence cytotoxicity. Thus, findings support our previous evidence that cationic di-oxidized spermine is a potent G1 inhibitor of cell proliferation. The possibility of intracellular free-radical and thiol involvement is discussed.

Full text

PDF
946

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alarcon R. A. Acrolein. IV. Evidence for the formation of the cytotoxic aldehyde acrolein from enzymatically oxidized spermine or spermidine. Arch Biochem Biophys. 1970 Apr;137(2):365–372. doi: 10.1016/0003-9861(70)90450-9. [DOI] [PubMed] [Google Scholar]
  2. BACHRACH U., PERSKY S. ANTIBACTERIAL ACTION OF OXIDIZED SPERMINE. J Gen Microbiol. 1964 Nov;37:195–204. doi: 10.1099/00221287-37-2-195. [DOI] [PubMed] [Google Scholar]
  3. Borg D. C., Schaich K. M., Elmore J. J., Jr, Bell J. A. Cytotoxic reactions of free radical species of oxygen. Photochem Photobiol. 1978 Oct-Nov;28(4-5):887–907. doi: 10.1111/j.1751-1097.1978.tb07037.x. [DOI] [PubMed] [Google Scholar]
  4. Byrd W. J., Jacobs D. M., Amoss M. S. Synthetic polyamines added to cultures containing bovine sera reversibly inhibit in vitro parameters of immunity. Nature. 1977 Jun 16;267(5612):621–623. doi: 10.1038/267621a0. [DOI] [PubMed] [Google Scholar]
  5. Cohen G. The generation of hydroxyl radicals in biologic systems: toxicological aspects. Photochem Photobiol. 1978 Oct-Nov;28(4-5):669–675. doi: 10.1111/j.1751-1097.1978.tb06993.x. [DOI] [PubMed] [Google Scholar]
  6. Fuller D. J., Gerner E. W., Russell D. H. Polyamine biosynthesis and accumulation during the G1 to S phase transition. J Cell Physiol. 1977 Oct;93(1):81–88. doi: 10.1002/jcp.1040930111. [DOI] [PubMed] [Google Scholar]
  7. Gaugas J. M., Curzen P. Polyamine interaction with pregnancy serum in suppression of lymphocyte transformation. Lancet. 1978 Jan 7;1(8054):18–20. doi: 10.1016/s0140-6736(78)90363-x. [DOI] [PubMed] [Google Scholar]
  8. Gaugas J. M., Dewey D. L. Evidence for serum binding of oxidized spermine and its potent G1-phase inhibition of cell proliferation. Br J Cancer. 1979 May;39(5):548–557. doi: 10.1038/bjc.1979.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gennaro R., Romeo D. The release of superoxide anion from granulocytes: effect of inhibitors of anion permeability. Biochem Biophys Res Commun. 1979 May 14;88(1):44–49. doi: 10.1016/0006-291x(79)91694-2. [DOI] [PubMed] [Google Scholar]
  10. Goldstein I. M., Kaplan H. B., Edelson H. S., Weissmann G. Ceruloplasmin. A scavenger of superoxide anion radicals. J Biol Chem. 1979 May 25;254(10):4040–4045. [PubMed] [Google Scholar]
  11. Hölttä E. Oxidation of spermidine and spermine in rat liver: purification and properties of polyamine oxidase. Biochemistry. 1977 Jan 11;16(1):91–100. doi: 10.1021/bi00620a015. [DOI] [PubMed] [Google Scholar]
  12. Kimes B. W., Morris D. R. Preparation and stability of oxidized polyamines. Biochim Biophys Acta. 1971 Jan 1;228(1):223–234. doi: 10.1016/0005-2787(71)90562-4. [DOI] [PubMed] [Google Scholar]
  13. Lynch R. E., Fridovich I. Effects of superoxide on the erythrocyte membrane. J Biol Chem. 1978 Mar 25;253(6):1838–1845. [PubMed] [Google Scholar]
  14. McCord J. M. Free radicals and inflammation: protection of synovial fluid by superoxide dismutase. Science. 1974 Aug 9;185(4150):529–531. doi: 10.1126/science.185.4150.529. [DOI] [PubMed] [Google Scholar]
  15. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  16. Melvin M. A., Keir H. M. Diminished excretion of polyamines from BHK-21/C13 cells exposed to methylglyoxal bis(guanylhydrazone). Biochem J. 1978 Jul 15;174(1):349–352. doi: 10.1042/bj1740349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Myers L. S., Jr Free radical damage of nucleic acids and their components by ionizing radiation. Fed Proc. 1973 Aug;32(8):1882–1894. [PubMed] [Google Scholar]
  18. Newton N. E., Abdel-Monem M. M. Inhibitors of polyamine biosynthesis. 4. Effects of alpha-methyl-(+/-)-ornithine and methylglyoxal bis(guanylhydrazone) on growth and polyamine content of L1210 leukemic cells of mice. J Med Chem. 1977 Feb;20(2):249–253. doi: 10.1021/jm00212a012. [DOI] [PubMed] [Google Scholar]
  19. Oberley L. W., Buettner G. R. Role of superoxide dismutase in cancer: a review. Cancer Res. 1979 Apr;39(4):1141–1149. [PubMed] [Google Scholar]
  20. Pryor W. A. The formation of free radicals and the consequences of their reactions in vivo. Photochem Photobiol. 1978 Oct-Nov;28(4-5):787–801. doi: 10.1111/j.1751-1097.1978.tb07020.x. [DOI] [PubMed] [Google Scholar]
  21. Quash G., Keolouangkhot T., Gazzolo L., Ripoll H., Saez S. Diamine oxidase and polyamine oxidase activities in normal and transformed cells. Biochem J. 1979 Jan 1;177(1):275–282. doi: 10.1042/bj1770275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rijke E. O., Ballieux R. E. Is thymus-derived lymphocyte inhibitor a polyamine? Nature. 1978 Aug 24;274(5673):804–805. doi: 10.1038/274804a0. [DOI] [PubMed] [Google Scholar]
  23. Sagone A. L., Jr, Kamps S., Campbell R. The effect of oxidant injury on the lymphoblastic transformation of human lymphocytes. Photochem Photobiol. 1978 Oct-Nov;28(4-5):909–915. doi: 10.1111/j.1751-1097.1978.tb07039.x. [DOI] [PubMed] [Google Scholar]
  24. Salin M. L., McCord J. M. Superoxide dismutases in polymorphonuclear leukocytes. J Clin Invest. 1974 Oct;54(4):1005–1009. doi: 10.1172/JCI107816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. TABOR C. W., TABOR H., BACHRACH U. IDENTIFICATION OF THE AMINOALDEHYDES PRODUCED BY THE OXIDATION OF SPERMINE AND SPERMIDINE WITH PURIFIED PLASMA AMINE OXIDASE. J Biol Chem. 1964 Jul;239:2194–2203. [PubMed] [Google Scholar]
  26. Tabor C. W., Tabor H. 1,4-Diaminobutane (putrescine), spermidine, and spermine. Annu Rev Biochem. 1976;45:285–306. doi: 10.1146/annurev.bi.45.070176.001441. [DOI] [PubMed] [Google Scholar]
  27. Tse D. C., McCreery R. L., Adams R. N. Potential oxidative pathways of brain catecholamines. J Med Chem. 1976 Jan;19(1):37–40. doi: 10.1021/jm00223a008. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES