Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1981 Apr;43(4):464–470. doi: 10.1038/bjc.1981.68

Different distribution of adriamycin in normal and leukaemic rats.

P Sonneveld, D W Van Bekkum
PMCID: PMC2010630  PMID: 6940622

Abstract

Adriamycin (ADR) accumulates in well-perfused organs in the rat. This effect is especially evident for long periods in marrow and spleen of healthy animals. In rats bearing the Brown Norway Acute Myeloid Leukaemia (BNML) the in vivo distribution is significantly different. Maximum ADR levels in those organs which are morphologically infiltrated by leukaemic cells are significantly lower than in normal rats, while the persistence of measurable ADR concentrations does not change. On the contrary, ADR concentrations in organs not infiltrated by leukaemic cells are the same or slightly higher than in normal rats. Possible causes for these differences are either the differential properties of normal and leukaemic cells in their uptake and excretion of ADR, or anatomical and vascular changes. It is evident that, significantly different from normal. This observation may help in the prevention of toxicity by drug monitoring in serum.

Full text

PDF
464

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aglietta M., Colly L. Relevance of recruitment-synchronization in the scheduling of 1-beta-D-arabinofuranosylcytosine in a slow-growing acute myeloid leukemia of the rat. Cancer Res. 1979 Jul;39(7 Pt 1):2727–2732. [PubMed] [Google Scholar]
  2. Aglietta M., Sonneveld P. The relevance of cell kinetics for optimal scheduling of 1-beta-D-arabinofuranosyl cytosine and methotrexate in a slow growing acute myeloid leukemia (BNML). Cancer Chemother Pharmacol. 1978;1(4):219–223. doi: 10.1007/BF00257153. [DOI] [PubMed] [Google Scholar]
  3. Benjamin R. S., Riggs C. E., Jr, Bachur N. R. Pharmacokinetics and metabolism of adriamycin in man. Clin Pharmacol Ther. 1973 Jul-Aug;14(4):592–600. doi: 10.1002/cpt1973144part1592. [DOI] [PubMed] [Google Scholar]
  4. Buick R. N., Messner H. A., Till J. E., McCulloch E. A. Cytotoxicity of adriamycin and daunorubicin for normal and leukemia progenitor cells of man. J Natl Cancer Inst. 1979 Feb;62(2):249–255. [PubMed] [Google Scholar]
  5. Carter S. K. Adriamycin-a review. J Natl Cancer Inst. 1975 Dec;55(6):1265–1274. doi: 10.1093/jnci/55.6.1265. [DOI] [PubMed] [Google Scholar]
  6. Chan K. K., Cohen J. L., Gross J. F., Himmelstein K. J., Bateman J. R., Tsu-Lee Y., Marlis A. S. Prediction of adriamycin disposition in cancer patients using a physiologic, pharmacokinetic model. Cancer Treat Rep. 1978 Aug;62(8):1161–1171. [PubMed] [Google Scholar]
  7. Donelli M. G., Colombo T., Broggini M., Garattini S. Differential distribution of antitumor agents in primary and secondary tumors. Cancer Treat Rep. 1977 Oct;61(7):1319–1324. [PubMed] [Google Scholar]
  8. Donelli M. G., Martini A., Colombo T., Bossi A., Garattini S. Heart levels of adriamycin in normal and tumor-bearing mice. Eur J Cancer. 1976 Nov;12(11):913–923. doi: 10.1016/0014-2964(76)90009-8. [DOI] [PubMed] [Google Scholar]
  9. Freireich E. J., Gehan E. A., Rall D. P., Schmidt L. H., Skipper H. E. Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man. Cancer Chemother Rep. 1966 May;50(4):219–244. [PubMed] [Google Scholar]
  10. Schwartz H. S. A fluorometric assay for daunomycin and adriamycin in animal tissues. Biochem Med. 1973 Jun;7(3):396–404. doi: 10.1016/0006-2944(73)90060-4. [DOI] [PubMed] [Google Scholar]
  11. Wilkinson P. M., Israel M., Pegg W. J., Frei E., 3rd Comparative metabolism and excretion of adriamycin in man, monkey, and rat. Cancer Chemother Pharmacol. 1979;2(2):121–125. doi: 10.1007/BF00254084. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES