Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1981 May;43(5):669–683. doi: 10.1038/bjc.1981.98

Mice, men, mustard and methylated xanthines: the potential role of caffeine and related drugs in the sensitization of human tumours to alkylating agents.

J E Byfield, J Murnane, J F Ward, P Calabro-Jones, M Lynch, F Kulhanian
PMCID: PMC2010679  PMID: 7248151

Abstract

The relationships between DNA damage from UV radiation, alkylating drugs and the methylated xanthines (MX) have been studied in normal and malignant rodent and human cells. A comparison of the level of DNA excision repair (repair replication and unscheduled DNA synthesis) confirms that some forms of alkylating-agent damage (probably mono-filar DNA adducts) are less completely removed by both normal and malignant rodent cells than by their human counterparts, rendering rodent cells more susceptible to the toxic potential of unexcised lesions. The toxicity of alkylating agents can be increased by the presence of several MXs during the period of DNA replication which follows infliction of the damage. Human cells appear capable of excising more DNA damage, rendering them somewhat less susceptible to enhancement of cytotoxicity by MX. This resistance of human cells is only quantitative, however, since 2 human cancer cell lines (HeLa and HT-29) could be sensitized to a variety of alkylating agents by appropriate concentrations of MX. Trimethylxanthine (caffeine) and the 2 clinically useful dimethylxanthines (theophylline and theobromine) appeared equally effective in sensitizing cells. The sensitization was dependent upon a slightly cytotoxic concentration of the MX and a suitably prolonged period of post-damage MX exposure. Of these 3 classic MXs, only theobromine might be clinically useful. The levels required for alkylating-agent sensitization exceed the clinically tolerable level of theophylline, and probably approach the tolerance of man to caffeine. The most likely mechanism by which MX sensitization is achieved is reversal of the inhibition of DNA replicon initiation which follows the infliction of significant DNA damage. Through the selection of suitable clinically useful alkylating agents (those dependent on active cellular transport for cell penetration) and appropriate MX scheduling, an enhanced therapeutic ratio might be achieved, potentially increasing the clinical usefulness of these alkylating agents. MX would thus form a useful class of agents adjuvant to conventional anti-cancer drugs.

Full text

PDF
669

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOYCE R. P., HOWARD-FLANDERS P. RELEASE OF ULTRAVIOLET LIGHT-INDUCED THYMINE DIMERS FROM DNA IN E. COLI K-12. Proc Natl Acad Sci U S A. 1964 Feb;51:293–300. doi: 10.1073/pnas.51.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker R. M., Van Voorhis W. C., Spencer L. A. HeLa cell variants that differ in sensitivity to monofunctional alkylating agents, with independence of cytotoxic and mutagenic responses. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5249–5253. doi: 10.1073/pnas.76.10.5249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beavo J. A., Rogers N. L., Crofford O. B., Hardman J. G., Sutherland E. W., Newman E. V. Effects of xanthine derivatives on lipolysis and on adenosine 3',5'-monophosphate phosphodiesterase activity. Mol Pharmacol. 1970 Nov;6(6):597–603. [PubMed] [Google Scholar]
  4. Bowden G. T., Trosko J. E., Shapas B. G., Boutwell R. K. Excision of pyrimidine dimers from epidermal DNA and nonsemiconservative epidermal DNA synthesis following ultraviolet irradiation of mouse skin. Cancer Res. 1975 Dec;35(12):3599–3607. [PubMed] [Google Scholar]
  5. Byfield J. E., Lee Y. C., Kulhanian F. X-ray excision repair replication and radiation survival in placental mammal cells. Int J Radiat Oncol Biol Phys. 1976 Sep-Oct;1(9-10):937–943. doi: 10.1016/0360-3016(76)90119-x. [DOI] [PubMed] [Google Scholar]
  6. Byfield J. E., Lee Y. C., Tu L. Molecular interactions between adriamycin and x-ray damage in mammalian tumor cells. Int J Cancer. 1977 Feb 15;19(2):186–193. doi: 10.1002/ijc.2910190208. [DOI] [PubMed] [Google Scholar]
  7. CORNISH H. H., CHRISTMAN A. A. A study of the metabolism of theobromine, theophylline, and caffeine in man. J Biol Chem. 1957 Sep;228(1):315–323. [PubMed] [Google Scholar]
  8. Cleaver J. E. Defective repair replication of DNA in xeroderma pigmentosum. Nature. 1968 May 18;218(5142):652–656. doi: 10.1038/218652a0. [DOI] [PubMed] [Google Scholar]
  9. Cleaver J. E. Repair replication of mammalian cell DNA: effects of compounds that inhibit DNA synthesis or dark repair. Radiat Res. 1969 Feb;37(2):334–348. [PubMed] [Google Scholar]
  10. Cohen M. H., Carbone P. P. Enhancement of the antitumor effects of 1,3-bis(2-chloroethyl)-1-nitrosourea and cyclophosphamide by vitamin A. J Natl Cancer Inst. 1972 Apr;48(4):921–926. [PubMed] [Google Scholar]
  11. Cohen M. H. Enhancement of the antitumor effect of 1,3-bis(2-chloroethyl)-1-nitrosourea by vitamin A and caffeine. J Natl Cancer Inst. 1972 Apr;48(4):927–932. [PubMed] [Google Scholar]
  12. Ehmann U. K., Gehring U., Tomkins G. M. Caffeine, cyclic AMP and postreplication repair of mammalian cell DNA. Biochim Biophys Acta. 1976 Oct 4;447(2):133–138. doi: 10.1016/0005-2787(76)90336-1. [DOI] [PubMed] [Google Scholar]
  13. Fraval H. N., Roberts J. J. Excision repair of cis-diamminedichloroplatinum(II)-induced damage to DNA of Chinese hamster cells. Cancer Res. 1979 May;39(5):1793–1797. [PubMed] [Google Scholar]
  14. Fujimoto K., Yoshida S., Moriyama Y., Sakaguchi T. Absorption, distribution, excretion, and metabolism of 1-(5-oxohexyl) theobromine (BL 191) in rats. Chem Pharm Bull (Tokyo) 1976 Jun;24(6):1137–1145. doi: 10.1248/cpb.24.1137. [DOI] [PubMed] [Google Scholar]
  15. Gaudin D., Yielding K. L. Response of a "resistant" plasmacytoma to alkylating agents and x-ray in combination with the "excision" repair inhibitors caffeine and chloroquine. Proc Soc Exp Biol Med. 1969 Sep;131(4):1413–1416. doi: 10.3181/00379727-131-34119. [DOI] [PubMed] [Google Scholar]
  16. Gautschi J. R., Young B. R., Painter R. B. Evidence for DNA repair replication in unirradiated mammalian cells--is it an artifact? Biochim Biophys Acta. 1972 Oct 27;281(3):324–328. doi: 10.1016/0005-2787(72)90445-5. [DOI] [PubMed] [Google Scholar]
  17. Goth R., Cleaver J. E. Metabolism of caffeine to nucleic acid precursors in mammalian cells. Mutat Res. 1976 Jul;36(1):105–114. doi: 10.1016/0027-5107(76)90025-7. [DOI] [PubMed] [Google Scholar]
  18. Kihlman B. A. Effects of caffeine on the genetic material. Mutat Res. 1974 Apr;26(2):53–71. doi: 10.1016/s0027-5107(74)80036-9. [DOI] [PubMed] [Google Scholar]
  19. Kihlman B. A., Sturelid S., Hartley-Asp B., Nilsson K. The enhancement by caffeine of the frequencies of chromosomal aberrations induced in plant and animal cells by chemical and physical agents. Mutat Res. 1974 Apr;26(2):105–122. doi: 10.1016/s0027-5107(74)80041-2. [DOI] [PubMed] [Google Scholar]
  20. Maher V. M., Ouellette L. M., Curren R. D., McCormick J. J. Caffeine enhancement of the cytotoxic and mutagenic effect of ultraviolet irradiation in a xeroderma pigmentosum variant strain of human cells. Biochem Biophys Res Commun. 1976 Jul 12;71(1):228–234. doi: 10.1016/0006-291x(76)90272-2. [DOI] [PubMed] [Google Scholar]
  21. Maher V. M., Ouellette L. M., Mittlestat M., McCormick J. J. Synergistic effect of caffeine on the cytotoxicity of ultraviolet irradiation and of hydrocarbon epoxides in strains of Xeroderma pigmentosum. Nature. 1975 Dec 25;258(5537):760–763. doi: 10.1038/258760a0. [DOI] [PubMed] [Google Scholar]
  22. Mourelatos D. C. Enhancement by caffeine of sister-chromatid exchange frequency induced by antineoplastic agents in human lymphocytes. Experientia. 1979 Jun 15;35(6):822–824. doi: 10.1007/BF01968274. [DOI] [PubMed] [Google Scholar]
  23. Murnane J. P., Byfield J. E., Ward J. F., Calabro-Jones P. Effects of methylated xanthines on mammalian cells treated with bifunctional alkylating agents. Nature. 1980 May 29;285(5763):326–329. doi: 10.1038/285326a0. [DOI] [PubMed] [Google Scholar]
  24. Ogilvie R. I. Clinical pharmacokinetics of theophylline. Clin Pharmacokinet. 1978 Jul-Aug;3(4):267–293. doi: 10.2165/00003088-197803040-00002. [DOI] [PubMed] [Google Scholar]
  25. Perper R. J., Zee T. W., Mickelson M. M. Purification of lymphocytes and platelets by gradient centrifugation. J Lab Clin Med. 1968 Nov;72(5):842–848. [PubMed] [Google Scholar]
  26. Rauth A. M., Barton B., Lee C. P. Effects of caffeine on L-cells exposed to mitomycin C. Cancer Res. 1970 Nov;30(11):2724–2729. [PubMed] [Google Scholar]
  27. Rauth A. M. Evidence for dark-reactivation of ultraviolet light damage in mouse L cells. Radiat Res. 1967 May;31(1):121–138. [PubMed] [Google Scholar]
  28. Regan J. D., Trosko J. E., Carrier W. L. Evidence for excision of ultraviolet-induced pyrimidine dimers from the DNA of human cells in vitro. Biophys J. 1968 Mar;8(3):319–325. doi: 10.1016/S0006-3495(68)86490-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Roberts J. J., Sturrock J. E., Ward K. N. The enhancement by caffeine of alkylation-induced cell death, mutations and chromosomal aberrations in Chinese hamster cells, as a result of inhibition of post-replication DNA repair. Mutat Res. 1974 Apr;26(2):129–143. doi: 10.1016/s0027-5107(74)80043-6. [DOI] [PubMed] [Google Scholar]
  30. Roberts J. J., Ward K. N. Inhibition of post-replication repair of alkylated DNA by caffeine in Chinese hamster cells but not HeLa cells. Chem Biol Interact. 1973 Oct;7(4):241–264. doi: 10.1016/0009-2797(73)90027-6. [DOI] [PubMed] [Google Scholar]
  31. SETLOW R. B., CARRIER W. L. THE DISAPPEARANCE OF THYMINE DIMERS FROM DNA: AN ERROR-CORRECTING MECHANISM. Proc Natl Acad Sci U S A. 1964 Feb;51:226–231. doi: 10.1073/pnas.51.2.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schroy C. B., Todd P. Potentiation by caffeine of ultraviolet-light damage in cultured human cells. Mutat Res. 1975 Dec;33(2-3):347–356. doi: 10.1016/0027-5107(75)90210-9. [DOI] [PubMed] [Google Scholar]
  33. Snyder M. H., Kimler B. F., Leeper D. B. The effect of caffeine on radiation-induced division delay. Int J Radiat Biol Relat Stud Phys Chem Med. 1977 Sep;32(3):281–284. doi: 10.1080/09553007714551001. [DOI] [PubMed] [Google Scholar]
  34. Spriet A., Spriet C., Larousse C., Chigot D., Roux M., Simon P. Methodology and results of a survey of adverse reactons to a drug in private practice. Eur J Clin Pharmacol. 1977 Mar 11;11(3):181–192. doi: 10.1007/BF00606408. [DOI] [PubMed] [Google Scholar]
  35. Sugiura K., Schmid F. A., Schmid M. M., Brown G. F. Effect of compounds on a spectrum of rat tumors. Cancer Chemother Rep 2. 1972 Nov;3(1):231–308. [PubMed] [Google Scholar]
  36. Timson J. Theobromine and theophylline. Mutat Res. 1975;32(2):169–178. doi: 10.1016/0165-1110(75)90005-6. [DOI] [PubMed] [Google Scholar]
  37. Tolmach L. J., Jones R. W., Busse P. M. The action of caffeine on X-irradiated HeLa cells. I. Delayed inhibition of DNA synthesis. Radiat Res. 1977 Sep;71(3):653–665. [PubMed] [Google Scholar]
  38. Waldren C. A., Rasko I. Caffeine enhancement of X-ray killing in cultured human and rodent cells. Radiat Res. 1978 Jan;73(1):95–110. [PubMed] [Google Scholar]
  39. Walker I. G., Reid B. D. Caffeine potentiation of the lethal action of alkylating agents on L-cells. Mutat Res. 1971 May;12(1):101–104. doi: 10.1016/0027-5107(71)90079-0. [DOI] [PubMed] [Google Scholar]
  40. Wilkinson R., Kiefer J., Nias A. H. Effects of post-treatment with caffeine on the sensitivity to ultraviolet light irradiation of two lines of HeLa cells. Mutat Res. 1970 Jul;10(1):67–72. doi: 10.1016/0027-5107(70)90147-8. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES