Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1981 Oct;44(4):532–538. doi: 10.1038/bjc.1981.222

Corynebacterium parvum stimulation of adherent and non-adherent cytotoxic cells in mice.

Z M Hassan, R C Rees, C W Potter
PMCID: PMC2010792  PMID: 7295509

Abstract

Two naturally occurring cytotoxic cell populations have been identified in the peritoneal cavity of mice inoculated with C. parvum (CP), and are distinguishable on the basis of target-cell reactivity and intrinsic properties. The first effector cell was non-adherent to nylon wool and glass and non-phagocytic. These cells were selectively cytotoxic to the NK-sensitive target cell line K562, and present in the peritoneal cavity of mice 2 days after treatment with 700 micrograms of CP. The second cytotoxic effector cell was adherent to nylon wool and glass, and killed EL4 lymphoma cells derived from in vivo tumour transplants; these target cells are susceptible to phagocytic cell killing, but not NK-cell cytotoxicity in short-term (4h) assays. The adherent cytotoxic population of effector cells was present 4 days after inoculation of CP. In vivo studies showed that CP injected i.p. induced resistance to i.p. challenge with lymphoma EL4 cells, but no resistance was evident when the challenge dose was administered s.c. Adoptive-transfer studies showed that the effector cell type responsible for inhibiting tumour growth was nylon-wool adherent, probably CP-activated macrophages.

Full text

PDF
532

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin R. W., Pimm M. V. BCG immunotherapy of a rat sarcoma. Br J Cancer. 1973 Oct;28(4):281–287. doi: 10.1038/bjc.1973.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baldwin R. W., Pimm M. V. BCG in tumor immunotherapy. Adv Cancer Res. 1978;28:91–147. doi: 10.1016/s0065-230x(08)60647-8. [DOI] [PubMed] [Google Scholar]
  3. Castro J. E. Antitumour effects of Corynebacterium parvum in mice. Eur J Cancer. 1974 Feb;10(2):121–127. doi: 10.1016/0014-2964(74)90063-2. [DOI] [PubMed] [Google Scholar]
  4. Djeu J. Y., Heinbaugh J. A., Holden H. T., Herberman R. B. Augmentation of mouse natural killer cell activity by interferon and interferon inducers. J Immunol. 1979 Jan;122(1):175–181. [PubMed] [Google Scholar]
  5. Djeu J. Y., Heinbaugh J. A., Holden H. T., Herberman R. B. Role of macrophages in the augementation of mouse natural killer cell activity by poly I:C and interferon. J Immunol. 1979 Jan;122(1):182–188. [PubMed] [Google Scholar]
  6. Einhorn S., Blomgren H., Strander H. Interferon and spontaneous cytotoxicity in man. I. Enhancement of the spontaneous cytotoxicity of peripheral lymphocytes by human leukocyte interferon. Int J Cancer. 1978 Oct 15;22(4):405–412. doi: 10.1002/ijc.2910220407. [DOI] [PubMed] [Google Scholar]
  7. Flexman J. P., Shellam G. R. Factors affecting stimulation of natural cytotoxicity to a rat lymphoma by Corynebacterium parvum. Br J Cancer. 1980 Jul;42(1):41–51. doi: 10.1038/bjc.1980.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gidlund M., Orn A., Wigzell H., Senik A., Gresser I. Enhanced NK cell activity in mice injected with interferon and interferon inducers. Nature. 1978 Jun 29;273(5665):759–761. doi: 10.1038/273759a0. [DOI] [PubMed] [Google Scholar]
  9. Hanna N., Fidler I. J. Role of natural killer cells in the destruction of circulating tumor emboli. J Natl Cancer Inst. 1980 Oct;65(4):801–809. doi: 10.1093/jnci/65.4.801. [DOI] [PubMed] [Google Scholar]
  10. Henney C. S., Tracey D., Durdik J. M., Klimpel G. Natural killer cells. In vitro and in vivo. Am J Pathol. 1978 Nov;93(2):459–468. [PMC free article] [PubMed] [Google Scholar]
  11. Herberman R. B., Nunn M. E., Lavrin D. H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer. 1975 Aug 15;16(2):216–229. doi: 10.1002/ijc.2910160204. [DOI] [PubMed] [Google Scholar]
  12. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  13. Kiessling R., Klein E., Wigzell H. "Natural" killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975 Feb;5(2):112–117. doi: 10.1002/eji.1830050208. [DOI] [PubMed] [Google Scholar]
  14. Kiessling R., Wigzell H. An analysis of the murine NK cell as to structure, function and biological relevance. Immunol Rev. 1979;44:165–208. doi: 10.1111/j.1600-065x.1979.tb00270.x. [DOI] [PubMed] [Google Scholar]
  15. Koo G. C., Jacobson J. B., Hammerling G. J., Hammerling U. Antigenic profile of murine natural killer cells. J Immunol. 1980 Sep;125(3):1003–1006. [PubMed] [Google Scholar]
  16. Milas L., Scott M. T. Antitumor activity of Corynebacterium parvum. Adv Cancer Res. 1978;26:257–306. doi: 10.1016/s0065-230x(08)60090-1. [DOI] [PubMed] [Google Scholar]
  17. Moore M., Potter M. R. Enhancement of human natural cell-mediated cytotoxicity by interferon. Br J Cancer. 1980 Mar;41(3):378–387. doi: 10.1038/bjc.1980.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Oehler J. R., Lindsay L. R., Nunn M. E., Holden H. T., Herberman R. B. Natural cell-mediated cytotoxicity in rats. II. In vivo augmentation of NK-cell activity. Int J Cancer. 1978 Feb 15;21(2):210–220. doi: 10.1002/ijc.2910210213. [DOI] [PubMed] [Google Scholar]
  19. Ojo E. Positive correlation between the levels of natural killer cells and the in vivo resistance to syngeneic tumor transplants as influenced by various routes of administration of Corynebacterium parvum bacteria. Cell Immunol. 1979 Jun;45(1):182–187. doi: 10.1016/0008-8749(79)90374-5. [DOI] [PubMed] [Google Scholar]
  20. Paige C. J., Figarella E. F., Cuttito M. J., Cahan A., Stutman O. Natural cytotoxic cells against solid tumors in mice. II. Some characteristics of the effector cells. J Immunol. 1978 Nov;121(5):1827–1835. [PubMed] [Google Scholar]
  21. Rees R. C., Bray J., Robins R. A., Baldwin R. W. Subpopulations of multiparous rat lymph-node cells cytotoxic for rat tumour cells and capable of suppressing cytotoxicity in vitro. Int J Cancer. 1975 May 15;15(5):762–772. doi: 10.1002/ijc.2910150507. [DOI] [PubMed] [Google Scholar]
  22. Senik A., Gresser I., Maury C., Gidlund M., Orn A., Wigzell H. Enhancement by interferon of natural killer cell activity in mice. Cell Immunol. 1979 Apr;44(1):186–200. doi: 10.1016/0008-8749(79)90039-x. [DOI] [PubMed] [Google Scholar]
  23. Stutman O., Paige C. J., Figarella E. F. Natural cytotoxic cells against solid tumors in mice. I. Strain and age distribution and target cell susceptibility. J Immunol. 1978 Nov;121(5):1819–1826. [PubMed] [Google Scholar]
  24. Trinchieri G., Santoli D. Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Enhancement of human natural killer cell activity by interferon and antagonistic inhibition of susceptibility of target cells to lysis. J Exp Med. 1978 May 1;147(5):1314–1333. doi: 10.1084/jem.147.5.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wolfe S. A., Tracey D. E., Henney C. S. Introduction of "natural" killer' cells by BCG. Nature. 1976 Aug 12;262(5569):584–586. doi: 10.1038/262584a0. [DOI] [PubMed] [Google Scholar]
  26. Zbar B., Bernstein I. D., Bartlett G. L., Hanna M. G., Jr, Rapp H. J. Immunotherapy of cancer: regression of intradermal tumors and prevention of growth of lymph node metastases after intralesional injection of living Mycobacterium bovis. J Natl Cancer Inst. 1972 Jul;49(1):119–130. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES