Abstract
Using a regrowth-delay assay, we investigated structure/activity relationships for the enhancement by electron-affinic agents of the anti-tumour effect of the nitrosourea CCNU against the KHT sarcoma in C3H mice. A series of neutral 2-nitroimidazoles similar in electron affinity but varying in octanol/water partition coefficient (PC) over 4 orders of magnitude (0.016- greater than 200, Misonidazole = 0.43) were examined at a fixed dose of 2.5 mmol/kg. A parabolic (quadratic) dependence of activity on log PC was observed. Analogues more hydrophilic than misonidazole (MISO) were inactive as were those with very high PCs (greater than 20). Those with PC 0.43--20 were usually more active than MISO, some considerably so. The fairly lipophilic 5-nitroimidazoles nimorazole and metronidazole (METRO) had similar activity to MISO, despite their reduced electron affinity. Two basic 2-nitroimidazoles more efficient as radiosensitizers in vitro likewise showed activity comparable to MISO. We also investigated several agents more electron-affinic than MISO, including some non-nitro compounds. Most were inactive at maximum tolerated doses, but nitrofurazone showed reasonable activity. Sensitizer dose-response curves were obtained for MISO, METRO and two of the most effective agents, benznidazole (Ro 07-1051) and Ro 07-1902. The two latter agents were both considerably more active than MISO at low doses (0.1--0.9 mmol/kg). These studies indicate that the structural features of electron-affinic agents responsible for the enhancement of KHT tumour response to CCNU, are quite different from those affecting radiosensitization, lipophilicity being particularly important. The microsomal enzyme-inhibitor SKF 525A increased the anti-tumour effect of CCNU, suggesting inhibition of CCNU metabolism as one possible mechanism contributing to chemosensitization by lipophilic electron-affinic agents in mice.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams G. E., Ahmed I., Clarke E. D., O'Neill P., Parrick J., Stratford I. J., Wallace R. G., Wardman P., Watts M. E. Structure-activity relationships in the development of hypoxic cell radiosensitizers. III. Effects of basic substituents in nitroimidazole sidechains. Int J Radiat Biol Relat Stud Phys Chem Med. 1980 Dec;38(6):613–626. doi: 10.1080/09553008014551451. [DOI] [PubMed] [Google Scholar]
- Adams G. E., Clarke E. D., Flockhart I. R., Jacobs R. S., Sehmi D. S., Stratford I. J., Wardman P., Watts M. E., Parrick J., Wallace R. G. Structure-activity relationships in the development of hypoxic cell radiosensitizers. I. Sensitization efficiency. Int J Radiat Biol Relat Stud Phys Chem Med. 1979 Feb;35(2):133–150. doi: 10.1080/09553007914550151. [DOI] [PubMed] [Google Scholar]
- Adams G. E., Stratford I. J., Wallace R. G., Wardman P., Watts M. E. Toxicity of nitro compounds toward hypoxic mammalian cells in vitro: dependence on reduction potential. J Natl Cancer Inst. 1980 Mar;64(3):555–560. [PubMed] [Google Scholar]
- Anderson R. F., Patel K. B., Sehmi D. S. Radiosensitization of hypoxic bacterial cells by nitroimidazoles of low lipophilicity: steady-state and rapid-mix studies. Radiat Res. 1981 Mar;85(3):496–504. [PubMed] [Google Scholar]
- Brown D. M., Parker E., Brown J. M. Structure-activity relationships of 1-substituted 2-nitroimidazoles: effect of partition coefficient and side-chain hydroxyl groups on radiosensitization in vitro. Radiat Res. 1982 Apr;90(1):98–108. [PubMed] [Google Scholar]
- Brown J. M. The mechanisms of cytotoxicity and chemosensitization by misonidazole and other nitroimidazoles. Int J Radiat Oncol Biol Phys. 1982 Mar-Apr;8(3-4):675–682. doi: 10.1016/0360-3016(82)90711-8. [DOI] [PubMed] [Google Scholar]
- Brown J. M., Workman P. Partition coefficient as a guide to the development of radiosensitizers which are less toxic than misonidazole. Radiat Res. 1980 Apr;82(1):171–190. [PubMed] [Google Scholar]
- Brown J. M., Yu N. Y., Brown D. M., Lee W. W. SR-2508: a 2-nitroimidazole amide which should be superior to misonidazole as a radiosensitizer for clinical use. Int J Radiat Oncol Biol Phys. 1981 Jun;7(6):695–703. doi: 10.1016/0360-3016(81)90460-0. [DOI] [PubMed] [Google Scholar]
- Clutterbuck R. D., Millar J. L., McElwain T. J. Misonidazole enhancement of the action of BCNU and melphalan against human melanoma xenografts. Am J Clin Oncol. 1982 Feb;5(1):73–78. [PubMed] [Google Scholar]
- Hirst D. G., Brown J. M., Hazlehurst J. L. Enhancement of CCNU cytotoxicity by misonidazole: possible therapeutic gain. Br J Cancer. 1982 Jul;46(1):109–116. doi: 10.1038/bjc.1982.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kallman R. F., Silini G., Van Putten L. M. Factors influencing the quantitative estimation of the in vivo survival of cells from solid tumors. J Natl Cancer Inst. 1967 Sep;39(3):539–549. [PubMed] [Google Scholar]
- Klubes P., Miller H. G., Cerna I., Trevithick J. Alterations in the toxicity and antitumor activity of methyl-CCNU in mice following pretreatment with either phenobarbital or SKF 525A. Cancer Treat Rep. 1979 Nov-Dec;63(11-12):1901–1907. [PubMed] [Google Scholar]
- McNally N. J. Enhancement of chemotherapy agents. Int J Radiat Oncol Biol Phys. 1982 Mar-Apr;8(3-4):593–598. doi: 10.1016/0360-3016(82)90691-5. [DOI] [PubMed] [Google Scholar]
- Mulcahy R. T. Chemical properties of nitrosoureas: implications for interaction with misonidazole. Int J Radiat Oncol Biol Phys. 1982 Mar-Apr;8(3-4):599–602. doi: 10.1016/0360-3016(82)90692-7. [DOI] [PubMed] [Google Scholar]
- Mulcahy R. T., Siemann D. W., Sutherland R. M. In vivo response of KHT sarcomas to combination chemotherapy with radiosensitizers and BCNU. Br J Cancer. 1981 Jan;43(1):93–99. doi: 10.1038/bjc.1981.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raaflaub J. Multiple-dose kinetics of the trypanosomicide benznidazole in man. Arzneimittelforschung. 1980;30(12):2192–2194. [PubMed] [Google Scholar]
- Sheldon P. W., Batten E. L. Potentiation in vivo of melphalan activity by nitroimidazole compounds. Int J Radiat Oncol Biol Phys. 1982 Mar-Apr;8(3-4):635–637. doi: 10.1016/0360-3016(82)90701-5. [DOI] [PubMed] [Google Scholar]
- Siemann D. W. In vivo combination of misonidazole and the chemotherapeutic agent CCNU. Br J Cancer. 1981 Mar;43(3):367–377. doi: 10.1038/bjc.1981.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siemann D. W. Response of murine tumours to combinations of CCNU with misonidazole and other radiation sensitizers. Br J Cancer. 1982 Feb;45(2):272–281. doi: 10.1038/bjc.1982.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephens T. C., Courtenay V. D., Mills J., Peacock J. H., Rose C. M., Spooner D. Enhanced cell killing in lewis lung carcinoma and a human pancreatic-carcinoma xenograft by the combination of cytotoxic drugs and misonidazole. Br J Cancer. 1981 Apr;43(4):451–457. doi: 10.1038/bjc.1981.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stratford I. J., Williamson C., Hoe S., Adams G. E. Radiosensitizing and cytotoxicity studies with CB 1954 (2,4-dinitro-5-aziridinylbenzamide). Radiat Res. 1981 Dec;88(3):502–509. [PubMed] [Google Scholar]
- Tannock I. F. In vivo interaction of anti-cancer drugs with misonidazole or metronidazole: cyclophosphamide and BCNU. Br J Cancer. 1980 Dec;42(6):871–880. doi: 10.1038/bjc.1980.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Twentyman P. R. In vitro pre-incubation with misonidazole under hypoxic conditions--effect on drug response of EMT6 spheroids. Int J Radiat Oncol Biol Phys. 1982 Mar-Apr;8(3-4):607–609. doi: 10.1016/0360-3016(82)90694-0. [DOI] [PubMed] [Google Scholar]
- Twentyman P. R., Kallman R. F., Brown J. M. The effect of time between X-irradiation and chemotherapy on the growth of three solid mouse tumors--I. Adriamycin. Int J Radiat Oncol Biol Phys. 1979 Aug;5(8):1255–1260. doi: 10.1016/0360-3016(79)90649-7. [DOI] [PubMed] [Google Scholar]
- Twentyman P., Workman P. Effect of misonidazole or metronidazole pretreatment on the response of the RIF-1 mouse sarcoma to melphalan, cyclophosphamide, chlorambucil and CCNU. Br J Cancer. 1982 Mar;45(3):447–455. doi: 10.1038/bjc.1982.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watras J., Wideł M., Suwiński J. Response of the solid Guerin epitheliomas of rats to fractionated irradiation and a new 4-nitroimidazole. Br J Cancer. 1979 Sep;40(3):354–359. doi: 10.1038/bjc.1979.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White R., Workman P., Owen L. The pharmacokinetics in mice and dogs of nitroimidazole radiosensitizers and chemosensitizers more lipophilic than misonidazole. Int J Radiat Oncol Biol Phys. 1982 Mar-Apr;8(3-4):473–476. doi: 10.1016/0360-3016(82)90664-2. [DOI] [PubMed] [Google Scholar]
- Workman P., Brown J. M. Structure-pharmacokinetic relationships for misonidazole analogues in mice. Cancer Chemother Pharmacol. 1981;6(1):39–49. doi: 10.1007/BF00253009. [DOI] [PubMed] [Google Scholar]
- Workman P., Twentyman P. R. Enhancement by electron-affinic agents of the therapeutic effects of cytotoxic agents against the KHT tumor: structure-activity relationships. Int J Radiat Oncol Biol Phys. 1982 Mar-Apr;8(3-4):623–626. doi: 10.1016/0360-3016(82)90698-8. [DOI] [PubMed] [Google Scholar]
- Zanelli G. D., Kaelin A. C. Synthetic porphyrins as tumour-localizing agents. Br J Radiol. 1981 May;54(641):403–407. doi: 10.1259/0007-1285-54-641-403. [DOI] [PubMed] [Google Scholar]
