Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 Jan;60(1):106–110. doi: 10.1128/aem.60.1.106-110.1994

Inhibition of Aflatoxin Production by Surfactants

Susan B Rodriguez 1,*, Noreen E Mahoney 1
PMCID: PMC201276  PMID: 16349144

Abstract

The effect of 12 surfactants on aflatoxin production, growth, and conidial germination by the fungus Aspergillus flavus is reported. Five nonionic surfactants, Triton X-100, Tergitol NP-7, Tergitol NP-10, polyoxyethylene (POE) 10 lauryl ether, and Latron AG-98, reduced aflatoxin production by 96 to 99% at 1% (wt/vol). Colony growth was restricted by the five nonionic surfactants at this concentration. Aflatoxin production was inhibited 31 to 53% by lower concentrations of Triton X-100 (0.001 to 0.0001%) at which colony growth was not affected. Triton X-301, a POE-derived anionic surfactant, had an effect on colony growth and aflatoxin production similar to that of the five POE-derived nonionic surfactants. Sodium dodecyl sulfate (SDS), an anionic surfactant, and dodecyltrimethylammonium bromide, a cationic surfactant, suppressed conidial germination at 1% (wt/vol). SDS had no effect on aflatoxin production or colony growth at 0.001%. The degree of aflatoxin inhibition by a surfactant appears to be a function of the length of the hydrophobic and hydrophilic chains of POE-derived surfactants.

Full text

PDF
106

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett J. W., Christensen S. B. New perspectives on aflatoxin biosynthesis. Adv Appl Microbiol. 1983;29:53–92. doi: 10.1016/s0065-2164(08)70354-x. [DOI] [PubMed] [Google Scholar]
  2. Beuchat L. R., De Daza M. S. Evaluation of Chemicals for Restricting Colony Spreading by a Xerophilic Mold, Eurotium amstelodami, on Dichloran-18% Glycerol Agar. Appl Environ Microbiol. 1992 Jun;58(6):2093–2095. doi: 10.1128/aem.58.6.2093-2095.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhatnagar D., McCormick S. P., Lee L. S., Hill R. A. Identification of O-methylsterigmatocystin as an aflatoxin B1 and G1 precursor in Aspergillus parasiticus. Appl Environ Microbiol. 1987 May;53(5):1028–1033. doi: 10.1128/aem.53.5.1028-1033.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buchanan R. L., Hoover D. G., Jones S. B. Caffeine inhibition of aflatoxin production: mode of action. Appl Environ Microbiol. 1983 Nov;46(5):1193–1200. doi: 10.1128/aem.46.5.1193-1200.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buchanan R. L., Lewis D. F. Caffeine inhibition of aflatoxin synthesis: probable site of action. Appl Environ Microbiol. 1984 Jun;47(6):1216–1220. doi: 10.1128/aem.47.6.1216-1220.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cleveland T. E., Lax A. R., Lee L. S., Bhatnagar D. Appearance of enzyme activities catalyzing conversion of sterigmatocystin to aflatoxin B1 in late-growth-phase Aspergillus parasiticus cultures. Appl Environ Microbiol. 1987 Jul;53(7):1711–1713. doi: 10.1128/aem.53.7.1711-1713.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dutton M. F. Enzymes and aflatoxin biosynthesis. Microbiol Rev. 1988 Jun;52(2):274–295. doi: 10.1128/mr.52.2.274-295.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ellis W. O., Smith J. P., Simpson B. K., Oldham J. H. Aflatoxins in food: occurrence, biosynthesis, effects on organisms, detection, and methods of control. Crit Rev Food Sci Nutr. 1991;30(4):403–439. doi: 10.1080/10408399109527551. [DOI] [PubMed] [Google Scholar]
  9. Gottlieb D. Limited growth in fungi. Mycologia. 1971 May-Jun;63(3):619–629. [PubMed] [Google Scholar]
  10. Hsieh D. P. Inhibition of aflatoxin biosynthesis of dichlorvos. J Agric Food Chem. 1973 May-Jun;21(3):468–470. doi: 10.1021/jf60187a035. [DOI] [PubMed] [Google Scholar]
  11. Joffe A. Z. Aflatoxin produced by 1,626 isolates of Aspergillus flavus from groundnut kernels and soils in Israel. Nature. 1969 Feb 1;221(5179):492–492. doi: 10.1038/221492a0. [DOI] [PubMed] [Google Scholar]
  12. Kramer V. C., Nickerson K. W., Hamlett N. V., O'Hara C. Prevalence of extreme detergent resistance among the Enterobacteriaceae. Can J Microbiol. 1984 May;30(5):711–713. doi: 10.1139/m84-106. [DOI] [PubMed] [Google Scholar]
  13. Kurtzman C. P., Horn B. W., Hesseltine C. W. Aspergillus nomius, a new aflatoxin-producing species related to Aspergillus flavus and Aspergillus tamarii. Antonie Van Leeuwenhoek. 1987;53(3):147–158. doi: 10.1007/BF00393843. [DOI] [PubMed] [Google Scholar]
  14. Parrish F. W., Wiley B. J., Simmons E. G., Long L., Jr Production of aflatoxins and kojic acid by species of Aspergillus and Penicillium. Appl Microbiol. 1966 Jan;14(1):139–139. doi: 10.1128/am.14.1.139-.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Singh R., Hsieh D. P. Aflatoxin biosynthetic pathway: elucidation by using blocked mutants of Aspergillus parasiticus. Arch Biochem Biophys. 1977 Jan 15;178(1):285–292. doi: 10.1016/0003-9861(77)90193-x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES